Search
Close this search box.

E-chapters

Bibliography

Andre, S.; Pieters, R. J.; Vrasidas, I.; Kaltner, H.; Kuwabara, I.; Liu, F. T.; Liskamp, R. M. J.; Gabius, H. J. Wedgelike Glycodendrimers as Inhibitors of Binding of Mammalian Galectins to Glycoproteins, Lactose Maxiclusters, and Cell Surface Glycoconjugates. ChemBioChem 2001, 2 (11), 822–830. https://doi.org/10.1002/1439-7633(20011105)2:11<822::AID-CBIC822>3.0.CO;2-W.

Audfray, A.; Varrot, A.; Imberty, A. Bacteria Love Our Sugars: Interaction between Soluble Lectins and Human Fucosylated Glycans, Structures, Thermodynamics and Design of Competing Glycocompounds. Comptes Rendus Chim. 2013, 16 (5), 482–490. https://doi.org/10.1016/j.crci.2012.11.021.

Angioletti-uberti, StefanoTheory, simulations and the design of functionalized nanoparticles for biomedical applications : A. S. M. P. Theory, Simulations and the Design of Functionalized Nanoparticles for Biomedical Applications: A Soft Matter Perspective. npj Comput. Mater. 2017, No. October, 1–15. https://doi.org/10.1038/s41524-017-0050-y.

Bandlow, V.; Liese, S.; Lauster, D.; Ludwig, K.; Netz, R. R.; Herrmann, A.; Seitz, O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. J. Am. Chem. Soc. 2017, 139 (45), 16389–16397. https://doi.org/10.1021/jacs.7b09967.

Bernardi, A.; Jiménez-Barbero, J.; Casnati, A.; De Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K.-E.; Lahmann, M.; Lindhorst, T. K.; Marradi, M.; Messner, P.; Molinaro, A.; Murphy, P. V.; Nativi, C.; Oscarson, S.; Penadés, S.; Peri, F.; Pieters, R. J.; Renaudet, O.; Reymond, J.-L.; Richichi, B.; Rojo, J.; Sansone, F.; Schäffer, C.; Turnbull, W. B.; Velasco-Torrijos, T.; Vidal, S.; Vincent, S.; Wennekes, T.; Zuilhof, H.; Imberty, A. Multivalent Glycoconjugates as Anti-Pathogenic Agents. Chem. Soc. Rev. 2013, 42 (11), 4709–4727. https://doi.org/10.1039/C2CS35408J.

Bernetti, M.; Masetti, M.; Rocchia, W.; Cavalli, A. Kinetics of Drug Binding and Residence Time. Annu. Rev. Phys. Chem. 2019, 70 (1), 143–171. https://doi.org/10.1146/annurev-physchem-042018-052340.

Beshr, G.; Sommer, R.; Hauck, D.; Bodin, C.; Hofmann, A.; Titz, A. Development of a Competitive Binding Assay for the Burkholderia Cenocepacia Lectin BC2L-A and Structure Activity Relationship of Natural and Synthetic Inhibitors. MedChemComm 2016, 7, 519–530. https://doi.org/10.1039/c5md00557d.

Bhatia, S.; Camacho, L. C.; Haag, R. Pathogen Inhibition by Multivalent Ligand Architectures. J. Am. Chem. Soc. 2016, 138 (28), 8654–8666. https://doi.org/10.1021/jacs.5b12950.

Bonnardel, F.; Mariethoz, J.; Salentin, S.; Robin, X.; Schroeder, M.; Perez, S.; Lisacek, F. D. S.; Imberty, A. Unilectin3d, a Database of Carbohydrate Binding Proteins with Curated Information on 3D Structures and Interacting Ligands. Nucleic Acids Res. 2019, 47 (D1), D1236–D1244. https://doi.org/10.1093/nar/gky832.

Boukareb, M. A.; Rousset, A.; Galanos, N.; Méar, J.; Gillon, E.; Cecioni, S.; Faure, K.; Kipnis, E.; Dessein, R.; Matthews, S. E.; Bentzmann, S. De; Guéry, B.; Cournoyer, B.; Imberty, A.; Darblade, B.; Vidal, S. Evaluation of the Anti-Adhesive Properties of Glycoclusters against Pseudomonas Aeruginosa in Bacterial Lung Infection. J. Med. Chem. 2014, 1–12. https://doi.org/10.1021/jm500038p.

Burnouf, D.; Ennifar, E.; Guedich, S.; Puffer, B.; Hoffmann, G.; Bec, G.; Disdier, F.; Baltzinger, M.; Dumas, P. KinITC: A New Method for Obtaining Joint Thermodynamic and Kinetic Data by Isothermal Titration Calorimetry. J. Am. Chem. Soc. 2012, 134 (1), 559–565. https://doi.org/10.1021/ja209057d.

Checovich, W. J.; Bolger, R. E.; Burke, T. Fluorescence Polarization – a New Tool for Cell and Molecular Biology. 1926, 254–256.

Compain, P. Multivalent Effect in Glycosidase Inhibition: The End of the Beginning. Chem. Rec. 2020, 20 (1), 10–22. https://doi.org/10.1002/tcr.201900004.

Curk, T.; Dobnikar, J.; Frenkel, D. Design Principles for Super Selectivity Using Multivalent Interactions. Multivalency Concepts, Res. Appl. 2017, 75–101. https://doi.org/10.1002/9781119143505.ch3.

Curk, T.; Dobnikar, J.; Frenkel, D. Optimal Multivalent Targeting of Membranes with Many Distinct Receptors. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (28), 7210–7215. https://doi.org/10.1073/pnas.1704226114.

Dam, T. K.; Roy, R.; Pagé, D.; Brewer, C. F. Negative Cooperativity Associated with Binding of Multivalent Carbohydrates to Lectins. Thermodynamic Analysis of the “Multivalency Effect.” Biochemistry 2002, 41 (4), 1351–1358. https://doi.org/10.1021/bi015830j.

Dam, T. K.; Oscarson, S.; Das, S. K.; Page, D.; Macaluso, F.; Brewer, C. F. Thermodynamic , Kinetic , and Electron Microscopy Studies of Concanavalin A and Dioclea Grandiflora Lectin Cross-Linked with Synthetic Divalent Carbohydrates *. J. Biol. Chem. 2005, 280 (10), 8640–8646. https://doi.org/10.1074/jbc.M412827200.

Dam, T. K.; Brewer, C. F. Effects of Clustered Epitopes in Multivalent Ligand-Receptor Interactions. Biochemistry 2008, 47 (33), 8470–8476. https://doi.org/10.1021/bi801208b.

Dam, T. K.; Gerken, T. A.; Brewer, C. F. Thermodynamics of Multivalent Carbohydrate-Lectin Cross-Linking Interactions: Importance of Entropy in the Bind and Jump Mechanism. Biochemistry 2009, 48 (18), 3822–3827. https://doi.org/10.1021/bi9002919.

Dam, T. K.; Brewer, C. F. Multivalent Lectin-Carbohydrate Interactions Energetics and Mechanisms of Binding., 1st ed.; Elsevier Inc., 2010; Vol. 63. https://doi.org/10.1016/S0065-2318(10)63005-3.

Dam, T. K.; Talaga, M. L.; Fan, N.; Brewer, C. F. Measuring Multivalent Binding Interactions by Isothermal Titration Calorimetry, 1st ed.; Elsevier Inc., 2016; Vol. 567. https://doi.org/10.1016/bs.mie.2015.08.013.

Dam, T. K.; Fan, N.; Talaga, M. L.; Brewer, C. F. Stoichiometry Regulates Macromolecular Recognition and Supramolecular Assembly: Examples From Lectin-Glycoconjugate Interaction, Second Edi.; Elsevier, 2017; Vol. 8. https://doi.org/10.1016/B978-0-12-409547-2.13810-7.

Di Iorio, D.; Huskens, J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020, 9 (1), 53–66. https://doi.org/10.1002/open.201900290.

Dumas, P.; Ennifar, E.; Da Veiga, C.; Bec, G.; Palau, W.; Di Primo, C.; Piñeiro, A.; Sabin, J.; Muñoz, E.; Rial, J. Extending ITC to Kinetics with KinITC. Methods Enzymol. 2016, 567, 157–180. https://doi.org/10.1016/bs.mie.2015.08.026.

Ernst, B.; Magnani, J. L. From Carbohydrate Leads to Glycomimetic Drugs. Nat. Rev. Drug Discov. 2009, 8 (8), 661–677. https://doi.org/10.1038/nrd2852.

Fujimoto, Z. Basic Procedure of X-Ray Crystallography for Analysis of Lectin–Sugar Interactions; 2014; Vol. 1200. https://doi.org/10.1007/978-1-4939-1292-6.

Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W. Oligosaccharide Microarrays for High-Throughput Detection and Specificity Assignments of Carbohydrate-Protein Interactions. Nat. Biotechnol. 2002, 20 (October), 1011–1017. https://doi.org/10.1038/nbt735.

Gabius, H. Cell Surface Glycans : The Why and How of Their Functionality as Biochemical Signals in Lectin-Mediated Information Transfer; Critical Reviews in Immunology, 2006; Vol. 26.

Gabius, H. J.; Andre, S.; Jiménez-Barbero, J.; Romero, A.; Solís, D. From Lectin Structure to Functional Glycomics: Principles of the Sugar Code. Trends Biochem. Sci. 2011, 36 (6), 298–313. https://doi.org/10.1016/j.tibs.2011.01.005.

Gestwicki, J. E.; Strong, L. E.; Cairo, C. W.; Boehm, F. J.; Kiessling, L. L. Cell Aggregation by Scaffolded Receptor Clusters. Chem. Biol. 2002, 9 (2), 163–169. https://doi.org/10.1016/S1074-5521(02)00102-3.

Gomez-Casado, A.; Dam, H. H.; Yilmaz, M. D.; Florea, D.; Jonkheijm, P.; Huskens, J. Probing Multivalent Interactions in a Synthetic Host-Guest Complex by Dynamic Force Spectroscopy. J. Am. Chem. Soc. 2011, 133 (28), 10849–10857. https://doi.org/10.1021/ja2016125.

Hauck, D.; Joachim, I.; Frommeyer, B.; Varrot, A.; Philipp, B.; Möller, H. M.; Imberty, A.; Exner, T. E.; Titz, A. Discovery of Two Classes of Potent Glycomimetic Inhibitors of Pseudomonas Aeruginosa LecB with Distinct Binding Modes. ACS Chem. Biol. 2013, 8 (8), 1775–1784. https://doi.org/10.1021/cb400371r.

Han, Z.; Pinkner, J. S.; Ford, B.; Obermann, R.; Nolan, W.; Wildman, S. A.; Hobbs, D.; Ellenberger, T.; Cusumano, C. K.; Hultgren, S. J.; Janetka, J. W. Structure-Based Drug Design and Optimization of Mannoside Bacterial FimH Antagonists. J. Med. Chem. 2010, 53 (12), 4779–4792. https://doi.org/10.1021/jm100438s.

Hardman, K. D.; Ainsworth, C. F. Structure of Concanavalin a at 2.4-å Resolution. Biochemistry 1972, 11 (26), 4910–4919. https://doi.org/10.1021/bi00776a006.

Hirst, G. K. The Quantitative Determination of Influenza Virus and Antibodies by Means of Red Cell Agglutination. J Exp Med 1942, 75 (1), 49–64.

Huang, X. Fluorescence Polarization Competition Assay: The Range of Resolvable Inhibitor Potency Is Limited by the Affinity of the Fluorescent Ligand. J. Biomol. Screen. 2003, 8 (1), 34–38. https://doi.org/10.1177/1087057102239666.

Imberty, A.; Varrot, A. Microbial Recognition of Human Cell Surface Glycoconjugates. Current Opinion in Structural Biology. Current Opinion in Structural Biology 2008, pp 567–576. https://doi.org/10.1016/j.sbi.2008.08.001.

Imberty, A.; Mitchell, E. P.; Wimmerová, M. Structural Basis of High-Affinity Glycan Recognition by Bacterial and Fungal Lectins. Curr. Opin. Struct. Biol. 2005, 15 (5), 525–534. https://doi.org/10.1016/j.sbi.2005.08.003.

Kakehi, K.; Oda, Y.; Kinoshita, M. Fluorescence Polarization: Analysis of Carbohydrate-Protein Interaction. Anal. Biochem. 2001, 297 (2), 111–116. https://doi.org/10.1006/abio.2001.5309.

Kitov, P. I.; Bundle, D. R. On the Nature of the Multivalency Effect: A Thermodynamic Model. J. Am. Chem. Soc. 2003, 125 (52), 16271–16284. https://doi.org/10.1021/ja038223n.

Kohn, M.; Benito, J. M.; Mellet, C. O.; Lindhorst, T. K.; Garcia Fernández, J. M. Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay: Ligands for Concanavalin A. ChemBioChem 2004, 5 (6), 771–777. https://doi.org/10.1002/cbic.200300807.

Kotone Sano and Haruko Ogawa. Hemagglutination (Inhibition) Assay. Lectins Methods Protoc. Methods Mol. Biol. 2014, 47–52. https://doi.org/10.1007/978-1-4939-1292-6_4.

Laigre, E.; Goyard, D.; Tiertant, C.; Dejeu, J.; Renaudet, O. The Study of Multivalent Carbohydrate-Protein Interactions by Bio-Layer Interferometry. Org. Biomol. Chem. 2018, 16 (46), 8899–8903. https://doi.org/10.1039/c8ob01664j.

Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd Edition, Joseph R. Lakowicz, Editor; 2006. https://doi.org/10.1007/978-0-387-46312-4.

Lanfranco, R.; Jana, P. K.; Tunesi, L.; Cicuta, P.; Mognetti, B. M.; Di Michele, L.; Bruylants, G. Kinetics of Nanoparticle-Membrane Adhesion Mediated by Multivalent Interactions. Langmuir 2019, 35 (6), 2002–2012. https://doi.org/10.1021/acs.langmuir.8b02707.

Lea, W. A.; Simeonov, A. Fluorescence Polarization Assays in Small Molecule Screening. Expert Opin. Drug Discov. 2011, 6 (1), 17–32. https://doi.org/10.1517/17460441.2011.537322.

Lee, Y. C.; Townsend, R. R.; Hardy, M. R.; Lönngren, J.; Arnarp, J.; Haraldsson, M.; Lönn, H. Binding of Synthetic Oligosaccharides to the Hepatic Gal/GalNAc Lectin. Dependence on Fine Structural Features. J. Biol. Chem. 1983, 258 (1), 199–202.

Lee, Y. C.; Lee, R. T. Carbohydrate-Protein Interactions : Basis of Glycobiology. Acc. Chem. Res. 1995, 28 (8), 321–327. https://doi.org/10.1021/ar00056a001.

Li, M. H.; Choi, S. K.; Leroueil, P. R.; Baker, J. R. Evaluating Binding Avidities of Populations of Heterogeneous Multivalent Ligand-Functionalized Nanoparticles. ACS Nano 2014, 8 (6), 5600–5609. https://doi.org/10.1021/nn406455s.

Li, C.; Hon, K.; Ghosh, B.; Li, P.; Lin, H. Synthesis of Oligomeric Mannosides and Their Structure-Binding Relationship with Concanavalin A. Chem. Asian J. 2014, 9, 1786–1796. https://doi.org/10.1002/asia.201402029.

Li, D.; Chen, L.; Wang, R.; Liu, R.; Ge, G. Synergetic Determination of Thermodynamic and Kinetic Signatures Using Isothermal Titration Calorimetry: A Full-Curve-Fitting Approach. Anal. Chem. 2017, 89 (13), 7130–7138. https://doi.org/10.1021/acs.analchem.7b01091.

Lundquist, J. J.; Toone, E. J. The Cluster Glycoside Effect. Chem. Rev. 2002, 102 (2), 555–578. https://doi.org/10.1021/cr000418f.

Maierhofer, C.; Rohmer, K.; Wittmann, V. Probing Multivalent Carbohydrate-Lectin Interactions by an Enzyme-Linked Lectin Assay Employing Covalently Immobilized Carbohydrates. Bioorganic Med. Chem. 2007, 15 (24), 7661–7676. https://doi.org/10.1016/j.bmc.2007.08.063.

Mammen, M.; Dahmann, G.; Whitesides, G. M. Effective Inhibitors of Hemagglutination by Influenza Virus Synthesized from Polymers Having Active Ester Groups. Insight into the Mechanism of Inhibition. J. Med. Chem. 1995, 38 (21), 4179–4190. https://doi.org/10.1021/jm00021a007.

Mammen, M.; Choi, S.; Whitesides, G. M. ChemInform Abstract: Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754–2794. https://doi.org/10.1002/chin.199909293.

Malik, A.; Baig, M.; Manavalan, B. Protein-Carbohydrate Interactions. Encycl. Bioinforma. Comput. Biol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-809633-8.20661-4.

Marchetti, R.; Perez, S.; Arda, A.; Imberty, A.; Jimenez-Barbero, J.; Silipo, A.; Molinaro, A. “Rules of Engagement” of Protein–Glycoconjugate Interactions: A Molecular View Achievable by Using NMR Spectroscopy and Molecular Modeling. Chemistry Open 2016, 5 (4), 274–296. https://doi.org/10.1002/open.201600024.

Martinez-Veracoechea, F. J.; Frenkel, D. Designing Super Selectivity in Multivalent Nano-Particle Binding. PNAS 2011, 108 (27), 10963–10968. https://doi.org/10.1073/pnas.1105351108.

McCoy, J. P.; Varani, J.; Goldstein, I. J. Enzyme-Linked Lectin Assay (ELLA): Use of Alkaline Phosphatase-Conjugated Griffonia Simplicifolia B4 Isolectin for the Detection of α-d-Galactopyranosyl End Groups. Anal. Biochem. 1983, 130 (2), 437–444. https://doi.org/10.1016/0003-2697(83)90613-9.

Meiers, J.; Siebs, E.; Zahorska, E.; Titz, A. Lectin Antagonists in Infection, Immunity, and Inflammation. Curr. Opin. Chem. Biol. 2019, 53, 51–67. https://doi.org/10.1016/j.cbpa.2019.07.005.

Moerke, N. J. Fluorescence Polarization (FP) Assays for Monitoring Peptide‐Protein or Nucleic Acid‐Protein Binding. Curr. Protoc. Chem. Biol. 2009, 1 (1), 1–15. https://doi.org/10.1002/9780470559277.ch090102.

Mol, N. J. De; Fischer, M. J. E. Surface Plasmon Resonance – Methods and Protocols; Springer Protocols – Methods in Molecular Biology 627, 2010.

Pang, P. C.; Chiu, P. C. N.; Lee, C. L.; Chang, L. Y.; Panico, M.; Morris, H. R.; Haslam, S. M.; Khoo, K. H.; Clark, G. F.; Yeung, W. S. B.; Dell, A. Human Sperm Binding Is Mediated by the Sialyl-Lewisx Oligosaccharide on the Zona Pellucida. Science (80-. ). 2011, 333 (6050), 1761–1764. https://doi.org/10.1126/science.1207438.

Peterson, K.; Kumar, R.; Stenström, O.; Verma, P.; Verma, P. R.; Håkansson, M.; Kahl-Knutsson, B.; Zetterberg, F.; Leffler, H.; Akke, M.; Logan, D. T.; Nilsson, U. J. Systematic Tuning of Fluoro-Galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit NM Affinity and High Selectivity. J. Med. Chem. 2018, 61 (3), 1164–1175. https://doi.org/10.1021/acs.jmedchem.7b01626.

Pieters, R. J. Maximising Multivalency Effects in Protein–Carbohydrate Interactions. Org. Biomol. Chem. 2009, 7 (10), 2013. https://doi.org/10.1039/b901828j.

Piñeiro, Á.; Muñoz, E.; Sabín, J.; Costas, M.; Bastos, M.; Velázquez-Campoy, A.; Garrido, P. F.; Dumas, P.; Ennifar, E.; García-Río, L.; Rial, J.; Pérez, D.; Fraga, P.; Rodríguez, A.; Cotelo, C. AFFINImeter: A Software to Analyze Molecular Recognition Processes from Experimental Data. Anal. Biochem. 2019, 577, 117–134. https://doi.org/10.1016/j.ab.2019.02.031.

Reynolds, M.; Pérez, S. Thermodynamics and Chemical Characterization of Protein-Carbohydrate Interactions: The Multivalency Issue. Comptes Rendus Chim. 2011, 14 (1), 74–95. https://doi.org/10.1016/j.crci.2010.05.020.

Rich, R. L.; Myszka, D. G. Survey of the 2009 Commercial Optical Biosensor Literature, 2011 (February), 892–914. https://doi.org/10.1002/jmr.1138.

Roy, R.; Murphy, P. V.; Gabius, H. J. Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016, 21 (5). https://doi.org/10.3390/molecules21050629.

Safina, G. Application of Surface Plasmon Resonance for the Detection of Carbohydrates, Glycoconjugates, and Measurement of the Carbohydrate-Specific Interactions: A Comparison with Conventional Analytical Techniques. A Critical Review. Anal. Chim. Acta 2012, 712, 9–29. https://doi.org/10.1016/j.aca.2011.11.016.

Schlick, K. H.; Cloninger, M. J. Inhibition Binding Studies of Glycodendrimer/Lectin Interactions Using Surface Plasmon Resonance. Tetrahedron 2010, 66 (29), 5305–5310. https://doi.org/10.1016/j.tet.2010.05.038.

Sicard, D.; Cecioni, S.; Iazykov, M.; Chevolot, Y.; Matthews, S. E.; Praly, J. P.; Souteyrand, E.; Imberty, A.; Vidal, S.; Phaner-Goutorbe, M. AFM Investigation of Pseudomonas Aeruginosa Lectin LecA (PA-IL) Filaments Induced by Multivalent Glycoclusters. Chem. Commun. 2011, 47 (33), 9483–9485. https://doi.org/10.1039/c1cc13097h.

Shinohara, Y.; Hasegawa, Y.; Kaku, H. Elucidation of the Mechanism Enhancing the Avidity of Lectin with Oligosaccharides on the Solid Phase Surface. 1997, 7 (8), 1201–1208.

Sörme, P.; Kahl-Knutsson, B.; Huflejt, M.; Nilsson, U. J.; Leffler, H. Fluorescence Polarization as an Analytical Tool to Evaluate Galectin-Ligand Interactions. Anal. Biochem. 2004, 334 (1), 36–47. https://doi.org/10.1016/j.ab.2004.06.042.

Stegmayr, J.; Lepur, A.; Kahl-Knutson, B.; Aguilar-Moncayo, M.; Klyosov, A. A.; Field, R. A.; Oredsson, S.; Nilsson, U. J.; Leffler, H. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-Binding Site by Pectins and Galactomannans. J. Biol. Chem. 2016, 291 (25), 13318–13334. https://doi.org/10.1074/jbc.M116.721464.

Sumner, J. B.; Howell, S. F. Identification of Hemagglutinin of Jack Bean with Concanavalin A. J. Bacteriol. 1936, 32 (2), 227–237. https://doi.org/10.1128/jb.32.2.227-237.1936.

Tian, X.; Angioletti-Uberti, S.; Battaglia, G. On the Design of Precision Nanomedicines. Sci. Adv. 2020, 6 (4), 1–12. https://doi.org/10.1126/sciadv.aat0919.

Tjandra, K. C.; Thordarson, P. Multivalency in Drug Delivery-When Is It Too Much of a Good Thing? Bioconjug. Chem. 2019, 30 (3), 503–514. https://doi.org/10.1021/acs.bioconjchem.8b00804.

Tonge, P. J. Drug-Target Kinetics in Drug Discovery. ACS Chem. Neurosci. 2018, 9 (1), 29–39. https://doi.org/10.1021/acschemneuro.7b00185.

Varrot, A. Blanchard, A. I. Lectin Binding and Its Structural Basis. Carbohydr. Recognit. Biol. Probl. Methods, Appl. 2011, No. 13, 329–347.

Velàzquez-Campoy,A. H. Ohtaka, A. Nezami, S. Muzammil, and E. F. Isothermal Titration Calorimetry. Curr. Protoc. Cell Biol. 2004, No. 17.8, 1–24. https://doi.org/10.1002/0471143030.cb1708s23.

Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A. Carbohydrate Microarrays for the Recognition of Cross-Reactive Molecular Markers of Microbes and Host Cells. 2002, 20 (March), 275–281.

Walker, J. M.; Fotinopoulou, A.; Turner, G. A. Glycoprofiling Purified Glycoproteins Using Surface Plasmon Resonance. Protein Protoc. Handbook, 2003, No. 5, 885–892. https://doi.org/10.1385/1-59259-169-8:885.

Wolfenden, M. L.; Cloninger, M. J. Multivalency in Carbohydrate Binding. Carbohydr. Recognit. Biol. Probl. Methods, Appl. 2011, 349–370. https://doi.org/10.1002/9781118017586.ch14.

Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Philos. Mag. Ser. 6 1902, 4:21, 396–402.

Yu, G.; Vicini, A. C.; Pieters, R. J. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas Aeruginosa Lectin LecA. J. Org. Chem. 2019, 84 (5), 2470–2488. https://doi.org/10.1021/acs.joc.8b02727.