Close this search box.



Ando, S., et al., A novel pentaglycosyl ceramide containing di-beta-N-acetylgalactos-aminyl residue (Para-Forssman glycolipid) isolated from human erythrocyte membrane. Adv Exp Med Biol, 1982. 152 : p. 71-81.

Anstee, D.J., Blood group-active surface molecules of the human red blood cell. Vox Sang, 1990. 58(1) : p. 1-20.

Bennett, E.P., et al., Genomic cloning of the human histo-blood group ABO locus. Biochem Biophys Res Commun, 1995. 211(1) : p. 347.

Breimer, M.E., Chemical and immunological identification of the Forssman penatglycosylceramide in kidney. Glycoconjugate J, 1985. 2 : p. 375-385.

Bremer, E.G., et al., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. J Biol Chem, 1984. 259(23) : p. 14773-7.

Calafell, F., et al., Evolutionary dynamics of the human ABO gene.Hum Genet, 2008. 124(2) : p. 123-35.

Chester, M.A. and M.L. Olsson, The ABO blood group gene : a locus of considerable genetic diversity. Transfus Med Rev, 2001. 15(3) : p. 177-200.

Clausen, H., et al., Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group A1 erythrocytes : one of the chemical bases for A1 and A2 distinction. Biochem Biophys Res Commun, 1984. 124(2) : p. 523-9.

Clausen, H., et al., Blood group A determinants with mono- and difucosyl type 1 chain in human erythrocyte membranes. Biochemistry, 1985. 24(14) : p. 3578-86.

Clausen, H., et al., Repetitive A epitope (type 3 chain A) defined by blood group A1-specific monoclonal antibody TH-1 : chemical basis of qualitative A1 and A2 distinction. Proc Natl Acad Sci U S A, 1985.82(4) : p. 1199-203.

Clausen, H., et al., Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). I. Isolation and chemical characterization. J Biol Chem, 1986. 261(3) : p. 1380-7.

Clausen, H., et al., Further characterization of type 2 and type 3 chain blood group A glycosphingolipids from human erythrocyte membranes.Biochemistry, 1986. 25(22) : p. 7075-85.

Clausen, H., E. Holmes, and S. Hakomori, Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes, and type 3 chain H expression in relation to secretor status. J Biol Chem, 1986. 261(3) : p. 1388-92.

Clausen, H. and S. Hakomori, ABH and related histo-blood group antigens ; immunochemical differences in carrier isotypes and their distribution. Vox Sang, 1989. 56(1) : p. 1-20.

Colley, K.J., Golgi localization of glycosyltransferases : more questions than answers. Glycobiology, 1997. 7(1) : p. 1-13.

Daniels, G., Human Blood Groups. Second ed. 2002 : Blackwell Science Ltd.

Dejter-Juszynski, M., et al., Blood-group ABH-specific macroglycolipids of human erythrocytes : isolation in high yield from a crude membrane glycoprotein fraction. Eur J Biochem, 1978. 83(2) : p. 363-73.

de Vries, T., et al., Acceptor specificity of different length constructs of human recombinant alpha 1,3/4-fucosyltransferases. Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity. J Biol Chem, 1995. 270(15) : p. 8712-22.

Donald, A.S., A-active trisaccharides isolated from A1 and A2 blood-group-specific glycoproteins. Eur J Biochem, 1981. 120(2) : p. 243-9.

Engelsen, S.B., Hansen, P.I. and Perez, S., Polys 2.0 : An Open Source Software Package for Building Three-Dimensional Structures of Polysaccharides. Biopolymers, 2014. 101(3) p. 733-743.

Ferguson-Smith, M.A., et al., Localisation of the human ABO : Np-1 : AK-1 linkage group by regional assignment of AK-1 to 9q34. Hum Genet, 1976. 34(1) : p. 35-43.

Fernandez-Mateos, P., et al., Point mutations and deletion responsible for the Bombay H null and the Reunion H weak blood groups. Vox Sang, 1998. 75(1) : p. 37-46.

Finne, J., et al., Alkali-stable blood group A- and B-active poly(glycosyl)-peptides from human erythrocyte membrane. FEBS Lett, 1978. 89(1) : p. 111-5.

Finne, J., Identification of the blood-group ABH-active glycoprotein components of human erythrocyte membrane. Eur J Biochem, 1980. 104(1) : p. 181-9.

Finne, J., et al., Molecular nature of the blood-group ABH antigens of the human erythrocyte membrane. Rev Fr Transfus Immunohematol, 1980. 23(5) : p. 545-52.

Fredriksson, S.A., et al., ABH blood group antigens in N-glycan of human glycophorin A. Arch Biochem Biophys, 2010. 498(2) : p. 127-35.

Fukuda, M. and M.N. Fukuda, Changes in cell surface glycoproteins and carbohydrate structures during the development and differentiation of human erythroid cells. J Supramol Struct Cell Biochem, 1981. 17(4) : p. 313-24.

Fukuda, M.N. and S. Hakomori, Structures of branched blood group A-active glycosphingolipids in human erythrocytes and polymorphism of A- and H-glycolipids in A1 and A2 subgroups. J Biol Chem, 1982. 257(1) : p. 446-55.

Fukuda, M., et al., Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes.J Biol Chem, 1984. 259(13) : p. 8260-73.

Gardas, A., Structure of an (A-blood-group)-active glycolipid isolated from human erythrocytes. Eur J Biochem, 1978. 89(2) : p. 471-3.

Grabenhorst, E. and H.S. Conradt, The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. J Biol Chem, 1999. 274(51) : p. 36107-16.

Grahn, A., et al., Determination of Lewis FUT3 gene mutations by PCR using sequence-specific primers enables efficient genotyping of clinical samples. Hum Mutat, 2001. 18(4) : p. 358-9.

Goldstein, J., et al., Further evidence for the presence of A antigen on group B erythrocytes through the use of specific exoglycosidases. Vox Sang, 1989. 57(2) : p. 142-6.

Hakomori, S., K. Stellner, and K. Watanabe, Four antigenic variants of blood group A glycolipid : examples of highly complex, branched chain glycolipid of animal cell membrane. Biochem Biophys Res Commun, 1972. 49(4) : p. 1061-8.

Hakomori, S., S.M. Wang, and W.W. Young, Jr., Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa : its possible identity with “A-like antigen” in human cancer.Proc Natl Acad Sci U S A, 1977. 74(7) : p. 3023-7.

Hakomori, S., Tumor-associated carbohydrate antigens. Annu Rev Immunol, 1984. 2 : p. 103-26.

Hakomori, S., Antigen structure and genetic basis of histo-blood groups A, B and O : their changes associated with human cancer. Biochim Biophys Acta, 1999. 1473(1) : p. 247-66.

Haslam, D.B. and J.U. Baenziger, Expression cloning of Forssman glycolipid synthetase : a novel member of the histo-blood group ABO gene family. Proc Natl Acad Sci U S A, 1996. 93(20) : p. 10697-702.

Helenius, A., How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell, 1994. 5(3) : p. 253-65.

Henry, S., R. Oriol, and B. Samuelsson, Lewis histo-blood group system and associated secretory phenotypes. Vox Sang, 1995. 69(3) : p. 166-82.

Holgersson, J., M.E. Breimer, and B.E. Samuelsson, Basic biochemistry of cell surface carbohydrates and aspects of the tissue distribution of histo-blood group ABH and related glycosphingolipids.APMIS Suppl, 1992. 27 : p. 18-27.

Hosseini-Maaf, B., et al., New and unusual O alleles at the ABO locus are implicated in unexpected blood group phenotypes. Transfusion, 2005. 45(1) : p. 70-81.

Kannagi, R., S.B. Levery, and S. Hakomori, Blood group H antigen with globo-series structure. Isolation and characterization from human blood group O erythrocytes. FEBS Lett, 1984. 175(2) : p. 397-401.

Karhi, K.K. and C.G. Gahmberg, Identification of blood group A-active glycoproteins in the human erythrocyte membrane. Biochim Biophys Acta, 1980. 622(2) : p. 344-54.

Kleene, R. and E.G. Berger, The molecular and cell biology of glycosyltransferases. Biochim Biophys Acta, 1993. 1154(3-4) : p. 283-325.

Koscielak, J., et al., Isolation and characterization of poly(glycosyl)ceramides (megaloglycolipids) with A, H and I blood-group activities. Eur J Biochem, 1976. 71(1) : p. 9-18.

Koscielak, J., ABH blood group active glycoconjugates from human red cells. Transfus Med, 2001. 11(4) : p. 267-79.

Koscielak, J., et al., Immunochemistry of Ii-active glycosphingolipids of erythrocytes. Eur J Biochem, 1979. 96(2) : p. 331-7.

Koscielak, J., Blood Group a Specific Glycolipids from Human Erythrocytes. Biochim Biophys Acta, 1963. 78 : p. 313-28.

Henry, S., R. Oriol, and B. Samuelsson, Lewis histo-blood group system and associated secretory phenotypes. Vox Sang, 1995. 69(3) : p. 166-82.

Larson, G., et al., Typing for the human lewis blood group system by quantitative fluorescence-activated flow cytometry : large differences in antigen presentation on erythrocytes between A(1), A(2), B, O phenotypes. Vox Sang, 1999. 77(4) : p. 227-36.

Lloyd, K.O., E.A. Kabat, and E. Licerio, Immunochemical studies on blood groups. 38. Structures and activities of oligosaccharides produced by alkaline degradation of blood-group Lewis-a substance. Proposed structure of the carbohydrate chains of human blood-group A, B, H, Le-a, and Le-b substances. Biochemistry, 1968. 7(8) : p. 2976-90.

Lloyd, K.O. and E.A. Kabat, Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewis-a, and Lewis-b substances. Proc Natl Acad Sci U S A, 1968. 61(4) : p. 1470-7.

Maccioni, H.J., R. Quiroga, and W. Spessott, Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett, 2011. 585(11) : p. 1691-8.

Maccioni, H.J., R. Quiroga, and M.L. Ferrari, Cellular and molecular biology of glycosphingolipid glycosylation. J Neurochem, 2011. 117(4) : p. 589-602.

Miller-Podraza, H., Polyglycosylceramides, Poly-N-acetyllactosamine-Containing Glycosphingolipids : Methods of Analysis, Structure, and Presumable Biological Functions. Chem Rev, 2000. 100(12) : p. 4663-82.

Mollicone, R., A. Cailleau, and R. Oriol, Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfus Clin Biol, 1995. 2(4) : p. 235-42.

Morgan, W.T. and W.M. Watkins, Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj J, 2000. 17(7-9) : p. 501-30.

Nagai, M., et al., Human blood group glycosyltransferases. I. Purification of n-acetylgalactosaminyltransferase. J Biol Chem, 1978. 253(2) : p. 377-9.

Nagai, M., et al., Human blood group glycosyltransferase. II. Purification of galactosyltransferase. J Biol Chem, 1978. 253(2) : p. 380-1.

Obukhova, P., et al., Natural anti-A and anti-B of the ABO system : allo- and autoantibodies have different epitope specificity. Transfusion, 2012. 52(4) : p. 860-9.

Okada, Y., et al., Glycolipid antigens with blood group I and i specificities from human adult and umbilical cord erythrocytes. J Immunol, 1984. 133(2) : p. 835-42.

Olsson, M.L. and M.A. Chester, Polymorphisms at the ABO locus in subgroup A individuals. Transfusion, 1996. 36(4) : p. 309-13.

Olsson, M.L., et al., Genomic analysis of clinical samples with serologic ABO blood grouping discrepancies : identification of 15 novel A and B subgroup alleles. Blood, 2001. 98(5) : p. 1585-93.

Olsson, M.L. and M.A. Chester, Polymorphism and recombination events at the ABO locus : a major challenge for genomic ABO blood grouping strategies. Transfus Med, 2001. 11(4) : p. 295-313.

Oriol, R., J. Le Pendu, and R. Mollicone, Genetics of ABO, H, Lewis, X and related antigens. Vox Sang, 1986. 51(3) : p. 161-71.

Oriol, R., ABH and related tissue antigens. Biochem Soc Trans, 1987. 15(4) : p. 596-9.

Oriol, R., B.E. Samuelsson, and L. Messeter, ABO antibodies—serological behaviour and immuno-chemical characterization. J Immunogenet, 1990. 17(4-5) : p. 279-99.

Palcic, M.M., N.O. Seto, and O. Hindsgaul, Natural and recombinant A and B gene encoded glycosyltransferases. Transfus Med, 2001. 11(4) : p. 315-23.

Patenaude, S.I., et al., The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Biol, 2002. 9(9) : p. 685-90.

Patnaik, S.K., W. Helmberg, and O.O. Blumenfeld, BGMUT : NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems. Nucleic Acids Res, 2012. 40(Database issue) : p. D1023-9.

Paulson, J.C., Glycoproteins : what are the sugar chains for ? Trends Biochem Sci, 1989. 14(7) : p. 272-6.

Perez, S., Three-Dimensional Representations of Complex Carbohydrates and Polysaccharides. Sweet Unity Mol : A Video Game Based Computer Graphic Software. Glycobiology, 2015, 25 (5), p. 483-491.

Paulson, J.C. and K.J. Colley, Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem, 1989. 264(30) : p. 17615-8.

Podbielska, M. and H. Krotkiewski, Identification of blood group A and B antigens in human glycophorin. Arch Immunol Ther Exp (Warsz), 2000. 48(3) : p. 211-21.

Podbielska, M., et al., ABH blood group antigens in O-glycans of human glycophorin A. Arch Biochem Biophys, 2004. 429(2) : p. 145-53.

Rege, V.P., et al., Three New Trisaccharides Obtained from Human Blood-Group a, B, H and Lea Substances : Possible Sugar Sequences in the Carbohydrate Chains. Nature, 1963. 200 : p. 532-4.

Romans, D.G., C.A. Tilley, and K.J. Dorrington, Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility. J Immunol, 1980. 124(6) : p. 2807-11.

Sano, R., et al., Expression of ABO blood-group genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype. Blood, 2012. 119(22) : p. 5301-10.

Schachter, H., The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J, 2000. 17(7-9) : p. 465-83.

Schenkel-Brunner, H., Blood-group-ABH antigens of human erythrocytes. Quantitative studies on the distribution of H antigenic sites among different classes of membrane components. Eur J Biochem, 1980. 104(2) : p. 529-34.

Schenkel-Brunner, H., Human Blood Groups, Chemical and Biochemical Basis of Antigen Specificity. 2nd ed. 2000, Wien : Springer-Verlag.

Seltsam, A., et al., The nature of diversity and diversification at the ABO locus. Blood, 2003. 102(8) : p. 3035-42.

Siddiqui, B., et al., Structures of ceramide tetrasaccharides from various sources : uniqueness of rat kidney ceramide tetrasaccharide. J Lipid Res, 1972. 13(5) : p. 657-62.

Storry, J.R. and M.L. Olsson, The ABO blood group system revisited : a review and update. Immunohematology, 2009. 25(2) : p. 48-59.

Soya, N., et al., Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases. Glycobiology, 2009. 19(11) : p. 1224-34.

Svensson, L., A. Petersson, and S.M. Henry, Secretor genotyping for A385T, G428A, C571T, C628T, 685delTGG, G849A, and other mutations from a single PCR. Transfusion, 2000. 40(7) : p. 856-60.

Svensson, L., et al., Novel glycolipid variations revealed by monoclonal antibody immunochemical analysis of weak ABO subgroups of A. Vox Sang, 2005. 89(1) : p. 27-38.

Svensson, L., et al., Blood group A(1) and A(2) revisited : an immunochemical analysis. Vox Sang, 2009. 96(1) : p. 56-61.

Svensson, L., et al., The structural basis of blood group A-related glycolipids in an A3 red cell phenotype and a potential explanation to a serological phenomenon. Glycobiology, 2011. 21(2) : p. 162-74.

Svensson, L., et al., Forssman expression on human erythrocytes : biochemical and genetic evidence of a new histo-blood group system.Blood, 2012.

Svensson, L., et al., Forssman expression on human erythrocytes : biochemical and genetic evidence of a new histo-blood group system. Blood, 2013. 121(8) : p. 1459-68.

Takasaki, S., K. Yamashita, and A. Kobata, The sugar chain structures of ABO blood group active glycoproteins obtained from human erythrocyte membrane. J Biol Chem, 1978. 253(17) : p. 6086-91.

Thorn, J.J., et al., Structural characterization of x2 glycosphingolipid, its extended form, and its sialosyl derivatives : accumulation associated with the rare blood group p phenotype. Biochemistry, 1992. 31(28) : p. 6509-17.

Tuppy, H. and W.L. Staudenbauer, Microsomal incorporation of N-acetyl-D-galactosamine into blood group substance. Nature, 1966. 210(5033) : p. 316-7.

Varki, A., Biological roles of oligosaccharides : all of the theories are correct. Glycobiology, 1993. 3(2) : p. 97-130.

Varki, A., et al., Symbol nomenclature for graphical representations of glycans
Glycobiology, 2015,  25 (12) : p. 1323-1324.

Watkins, W.M. and W.T. Morgan, Possible genetical pathways for the biosynthesis of blood group mucopolysaccharides. Vox Sang, 1959. 4(2) : p. 97-119.

Watkins, W.M., et al., Regulation of expression of carbohydrate blood group antigens. Biochimie, 1988. 70(11) : p. 1597-611.

White, T., et al., Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem, 1995. 270(41) : p. 24156-65.

Wilczynska, Z., H. Miller-Podraza, and J. Koscielak, The contribution of different glycoconjugates to the total ABH blood group activity of human erythrocytes. FEBS Lett, 1980. 112(2) : p. 277-9.

Yamakawa, T. and T. Iida, Immunochemical study on the red blood cells. I. Globoside, as the agglutinogen of the ABO system on erythrocytes. Jpn J Exp Med, 1953. 23(4) : p. 327-31.

Yamakawa, T., S. Yokoyama, and N. Handa, Chemistry of lipids of posthemolytic residue or stroma of erythrocytes. XI. Structure of globoside, the main mucolipid of human erythrocytes. J Biochem, 1963. 53 : p. 28-36.

Yamakawa, T., A reflection on the early history of glycosphingolipids.Glycoconj J, 1996. 13(2) : p. 123-6.

Yamamoto, F. and S. Hakomori, Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem, 1990. 265(31) : p. 19257-62.

Yamamoto, F., et al., Cloning and characterization of DNA complementary to human UDP-GalNAc : Fuc alpha 1—-2Gal alpha 1—-3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem, 1990. 265(2) : p. 1146-51.

Yamamoto, F., et al., Molecular genetic basis of the histo-blood group ABO system. Nature, 1990. 345(6272) : p. 229-33.

Yamamoto, F., P.D. McNeill, and S. Hakomori, Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun, 1992. 187(1) : p. 366-74.

Yamamoto, F., Molecular genetics of the ABO histo-blood group system. Vox Sang, 1995. 69(1) : p. 1-7.

Yamamoto, F. and P.D. McNeill, Amino acid residue at codon 268 determines both activity and nucleotide-sugar donor substrate specificity of human histo-blood group A and B transferases. In vitro mutagenesis study. J Biol Chem, 1996. 271(18) : p. 10515-20.

Yamamoto, F., Review : ABO blood group system—ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematology, 2004. 20(1) : p. 3-22.

Yamamoto, F., et al., ABO research in the modern era of genomics.Transfus Med Rev, 2012. 26(2) : p. 103-18.

Yazer, M.H. and M.L. Olsson, The O2 allele : questioning the phenotypic definition of an ABO allele. Immunohematology, 2008. 24(4) : p. 138-47.

Yip, S.P., Sequence variation at the human ABO locus. Ann Hum Genet, 2002. 66(Pt 1) : p. 1-27.

Yoshida, A., et al., An enzyme basis for blood type A intermediate status. Am J Hum Genet, 1982. 34(6) : p. 919-24.