Glycosylated queuosines in tRNAs Optimize Translational Rate and Post-Embryonic Growth

Author(s)

X. Zhao, D. Ma, K. Ishiguro, H. Saito, S. Akichika, I. Matsuzawa, M. Mito, T. Irie , K. Ishibashi, , K. Wakabayashi, Y. Sakaguchi , T. Yokoyama , Y. Mishima, M. Shirouzu , S. Iwasaki, T. Suzuki , T. Suzuki

Sources

Cell, 2023 Nov 17:S0092-8674(23)01177-7., doi : 10.1016/j.cell.2023.10.026.

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. Q is further glycosylated with galactose and mannose to form galQ and manQ in vertebrate Tyr and Asp tRNAs. However, biogenesis and physiological relevance remain poorly understood. The authors report the biochemical identification of two RNA glycosylases, QTGAL and QTMAN, and the successful reconstitution of tRNA Q-glycosylation with nucleotide diphosphate sugars.

Q-glycosylation slowed elongation at the cognate codons UAC and GAC (GAU), respectively, according to ribosome profiling of knockout cells. The authors found that galactosylation of Q suppressed stop codon read-through. In addition, protein aggregates increased in cells lacking Q-glycosylation, suggesting that Q-glycosylation contributes to proteostasis. Cryo-EM of the human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylation.

Latest news

Starch granules offer a unique platform for studying complex, multiresonator lasing phenomena, highlighting the importance...

Cyclodextrins (CDs) are known for their ability to form supramolecular interactions with a wide range...

Lactobacillus displacement from the vaginal microbiome associates with adverse health outcomes and is linked to...

Studies on glycans of glycoproteins are hampered by the lack of standards that reflect the...