Pathogen-sugar interactions revealed by universal saturation transfer analysis

Author(s)

C.J. Buchanan, …….., B.G. Davis

Sources

SCIENCE, 23 Jun 2022, First Release DOI: 10.1126/science.abm3125

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily-modified pathogen proteins can be confounded by overlapping sugar signals and/or compound with known experimental constraints. ‘Universal saturation transfer analysis’ (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions.
universals.png
uSTA reveals that early-pandemic, B-origin lineage SARS-CoV-2 spike trimer binds sialoside sugars in an ‘end-on’ manner. uSTA-guided modelling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar-binding in SARS CoV 2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins in deeper human lung as potentially relevant to virulence and/or zoonosis.

Latest news

Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation...

Mucin, proteoglycan, glyconectin, and hyaluronan intermolecular binding in the physiological hydrated state forms the native...

CAZymes (Carbohydrate Active EnZymes) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are...

DIONYSUS is a database of protein-carbohydrate interfaces annotated according to proteins and carbohydrates’ structural, chemical...