Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT

Author(s)

• R. Riera, T.P. Hogervorst, W. Doelman, Y. Ni, S. Pujals, E. Bolli, J.D.C. Codée, S. I. van Kasteren & L. Albertazzi

Sources

Nature Chemical Biology (2021) https://doi.org/10.1038/s41589-021-00896-2

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. The authors introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan–lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes. The diffusion coefficient of the receptor–sugar complex is also established.
glycopaint.png
The uptake of ligands correlates with their binding affinity and residence time to establish the structure-function relations for various synthetic glycans. The authors reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan–lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin–sugar interactions.

Latest news

recognize sialic acid residues on cell surfaces. Pathogens and tumor cells exploit Siglecs to evade...

Glycans are flexible molecules that can adopt multiple conformations, granting them significant biological versatility. However,...

Cellulose, a pivotal component of plant cell walls, is a widely studied biologically derived material...

Fares, M., Imberty, A.  & Titz, A Bacteria often utilize their lectins to promote pathogenesis....