Architecture of a Catalytically Active Homotrimeric Plant Cellulose Synthase Complex

Author(s)

Purushotham, P., Ho, R., & Zimmer, J.†

Sources

P. Purushotham et al., Science 10.1126/science.abb2978 (2020).

Cellulose is an essential plant cell wall component. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components.
cellulase-2.png
The authors determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant conserved regions and helical exchange within the transmembrane segment, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which may facilitate protofibril formation. CesAs’ N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. These data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.

Latest news

Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation...

Mucin, proteoglycan, glyconectin, and hyaluronan intermolecular binding in the physiological hydrated state forms the native...

CAZymes (Carbohydrate Active EnZymes) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are...

DIONYSUS is a database of protein-carbohydrate interfaces annotated according to proteins and carbohydrates’ structural, chemical...