References

1. Aspinall, G. O., The Polysaccharides. Vol. 2 Academic Press : Orlando ; London, 1983

2. Turnbull, J. E. ; Field, R. A., Emerging glycomics technologies. Nat Chem Biol 2007, 3 (2), 74-7.

3. Aoki-Kinoshita, K., A Practical Guide to Using Glycomics Databases. 2017.

4. Barcelos, M. C. S. ; Vespermann, K. A. C. ; Pelissari, F. M. ; Molina, G., Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2020, 60 (9), 1475-1495.

5. Silipo, A. ; Molinaro, A., Endotoxins : Structure, function and recognition. Wang, X. ; Quinn, P. J., Eds. Springer Verlag : Dordrecht ; New York, 2010 ; Vol. 53, pp 69-99.

6. Di Lorenzo, F. ; De Castro, C. ; Lanzetta, R. ; Parrilli, M. ; Silipo, A. ; Molinaro, A., Chapter 3 Lipopolysaccharides as Microbe-associated Molecular Patterns : A Structural Perspective. In Carbohydrates in Drug Design and Discovery, The Royal Society of Chemistry : 2015 ; pp 38-63.

7. Molinaro, A. ; Holst, O. ; Di Lorenzo, F. ; Callaghan, M. ; Nurisso, A. ; D’Errico, G. ; Zamyatina, A. ; Peri, F. ; Berisio, R. ; Jerala, R. ; Jiménez-Barbero, J. ; Silipo, A. ; Martín-Santamaría, S., Chemistry of lipid A : at the heart of innate immunity. Chemistry 2015, 21 (2), 500-19.

8. Mazgaeen, L. ; Gurung, P., Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci 2020, 21 (2).

9. Raetz, C. R. ; Whitfield, C., Lipopolysaccharide endotoxins. Annu Rev Biochem 2002, 71, 635-700.

10. Raetz, C. R. ; Reynolds, C. M. ; Trent, M. S. ; Bishop, R. E., Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 2007, 76, 295-329.

11. Fahy, E. ; Subramaniam, S. ; Brown, H. A. ; Glass, C. K. ; Merrill, A. H., Jr. ; Murphy, R. C. ; Raetz, C. R. ; Russell, D. W. ; Seyama, Y. ; Shaw, W. ; Shimizu, T. ; Spener, F. ; van Meer, G. ; VanNieuwenhze, M. S. ; White, S. H. ; Witztum, J. L. ; Dennis, E. A., A comprehensive classification system for lipids. J Lipid Res 2005, 46 (5), 839-61.

12. Parija, S. C., Textbook of Microbiology and Immunology. Second edition ed. ; Elseiver : Puducherry, 2012.

13. Silipo, A. ; Molinaro, A. ; Sturiale, L. ; Dow, J. M. ; Erbs, G. ; Lanzetta, R. ; Newman, M. A. ; Parrilli, M., The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 2005, 280 (39), 33660-8.

14. De Castro, C. ; Molinaro, A. ; Lanzetta, R. ; Silipo, A. ; Parrilli, M., Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydrate research 2008, 343 (12), 1924-1933.

15. Holst, O., The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiology Letters 2007, 271 (1), 3-11.

16. Silipo, A. ; Leone, S. ; Lanzetta, R. ; Parrilli, M. ; Sturiale, L. ; Garozzo, D. ; Nazarenko, E. L. ; Gorshkova, R. P. ; Ivanova, E. P. ; Gorshkova, N. M., The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate research 2004, 339 (11), 1985-1993.

17. Reeves, P. R. ; Cunneen, M. M., Biosynthesis of O-antigen chains and assembly. In Microbial Glycobiology, Elsevier : 2010 ; pp 319-335.

18. Lerouge, I. ; Vanderleyden, J., O-antigen structural variation : mechanisms and possible roles in animal/plant–microbe interactions. FEMS microbiology reviews 2002, 26 (1), 17-47.

19. Gonzalez-Santana, A. ; Diaz Heijtz, R., Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends Mol Med 2020, 26 (8), 729-743.

20. Wheeler, R. ; Chevalier, G. ; Eberl, G. ; Gomperts Boneca, I., The biology of bacterial peptidoglycans and their impact on host immunity and physiology. Cell Microbiol 2014, 16 (7), 1014-23.

21. Vollmer, W. ; Blanot, D. ; de Pedro, M. A., Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008, 32 (2), 149-67.

22. Dirienzo, J. M. ; Nakamura, K. ; Inouye, M., The outer membrane proteins of Gram-negative bacteria : biosynthesis, assembly, and functions. Annual review of biochemistry 1978, 47 (1), 481-532.

23. Tosoni, G. ; Conti, M. ; Diaz Heijtz, R., Bacterial peptidoglycans as novel signaling molecules from microbiota to brain. Curr Opin Pharmacol 2019, 48, 107-113.

24. Armstrong, J. J. ; Baddiley, J. ; Buchanan, J. G. ; Carss, B. ; Greenberg, G. R., 882. Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. Journal of the Chemical Society (Resumed) 1958, (0), 4344-4354.

25. Armstrong, J. J. ; Baddiley, J. ; Buchanan, J. G. ; Davison, A. L. ; Kelemen, M. V. ; Neuhaus, F. C., Teichoic Acids from Bacterial Walls : Composition of Teichoic Acids from a Number of Bacterial Walls. Nature 1959, 184 (4682), 247-248.

26. Pasquina, L. W. ; Santa Maria, J. P. ; Walker, S., Teichoic acid biosynthesis as an antibiotic target. Curr Opin Microbiol 2013, 16 (5), 531-7.

27. Swoboda, J. G. ; Campbell, J. ; Meredith, T. C. ; Walker, S., Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 2010, 11 (1), 35-45.

28. Percy, M. G. ; Grundling, A., Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 2014, 68, 81-100.

29. Poxton, I. R., Teichoic Acids, Lipoteichoic Acids and Other Secondary Cell Wall and Membrane Polysaccharides of Gram-Positive Bacteria. In Molecular Medical Microbiology, 2015 ; pp 91-103.

30. Brown, S. ; Santa Maria, J. P., Jr. ; Walker, S., Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 2013, 67, 313-36.

31. Schneewind, O. ; Missiakas, D., Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria. Journal of Bacteriology 2014, 196 (6), 1133.

32. Reichmann, N. T. ; Grundling, A., Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 2011, 319 (2), 97-105.

33. Neuhaus, F. C. ; Baddiley, J., A continuum of anionic charge : structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 2003, 67 (4), 686-723.

34. Xia, G. ; Peschel, A., Toward the pathway of S. aureus WTA biosynthesis. Chem Biol 2008, 15 (2), 95-6.

35. Weidenmaier, C. ; Peschel, A., Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology 2008, 6 (4), 276-287.

36. Costerton, J. W. ; Irvin, R. T. ; Cheng, K. J., The bacterial glycocalyx in nature and disease. Annual Reviews in Microbiology 1981, 35 (1), 299-324.

37. Reckseidler-Zenteno, S. L., Capsular Polysaccharides Produced by the Bacterial Pathogen Burkholderia pseudomallei. In The Complex World of Polysaccharides, 2012.

38. Roberts, I. S., The biochemistry and genetics of capsular polysaccharide production in bacteria. Annual review of microbiology 1996, 50 (1), 285-315.

39. Whitfield, C., Bacterial extracellular polysaccharides. Canadian Journal of Microbiology 1988, 34 (4), 415-420.

40. Nwodo, U. U. ; Green, E. ; Okoh, A. I., Bacterial exopolysaccharides : functionality and prospects. Int J Mol Sci 2012, 13 (11), 14002-15.

41. Zhou, Y. ; Cui, Y. ; Qu, X., Exopolysaccharides of lactic acid bacteria : Structure, bioactivity and associations : A review. Carbohydr Polym 2019, 207, 317-332.

42. Moscovici, M., Present and future medical applications of microbial exopolysaccharides. Front Microbiol 2015, 6, 1012.

43. Jin, H. ; Jeong, Y. ; Yoo, S. H. ; Johnston, T. V. ; Ku, S. ; Ji, G. E., Isolation and characterisation of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces. Microb Cell Fact 2019, 18 (1), 110.

44. Boels, I. C. ; van Kranenburg, R. ; Hugenholtz, J. ; Kleerebezem, M. ; De Vos, W. M., Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. International Dairy Journal 2001, 11 (9), 723-732.

45. Ruas-Madiedo, P. ; Hugenholtz, J. ; Zoon, P., An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 2002, 12 (2-3), 163-171.

46. Sarkar, A. ; Drouillard, S. ; Rivet, A. ; Perez, S., Databases of conformations and NMR structures of glycan determinants. Glycobiology 2015, 25 (12), 1480-1490.

47. Marchetti, R. ; Forgione, R. E. ; Fabregat, F. N. ; Di Carluccio, C. ; Molinaro, A. ; Silipo, A., Solving the structural puzzle of bacterial glycome. Current Opinion in Structural Biology 2021, 68, 74-83.

48. Scherbinina, S. I. ; Toukach, P. V., Three-dimensional structures of carbohydrates and where to find them. International journal of molecular sciences 2020, 21 (20), 7702.

49. Abrahams, J. L. ; Taherzadeh, G. ; Jarvas, G. ; Guttman, A. ; Zhou, Y. ; Campbell, M. P., Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Current Opinion in Structural Biology 2020, 62, 56-69.

50. Li, X. ; Xu, Z. ; Hong, X. ; Zhang, Y. ; Zou, X., Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics. International Journal of Molecular Sciences 2020, 21 (18), 6727.

51. Lisacek, F. ; Mariethoz, J. ; Alocci, D. ; Rudd, P. M. ; Abrahams, J. L. ; Campbell, M. P. ; Packer, N. H. ; Ståhle, J. ; Widmalm, G. ; Mullen, E., Databases and associated tools for glycomics and glycoproteomics. In High-throughput glycomics and glycoproteomics, Springer : 2017 ; pp 235-264.

52. Lal, K. ; Bermeo, R. ; Perez, S., Computational tools for drawing, building and displaying carbohydrates : a visual guide. Beilstein Journal of Organic Chemistry 2020, 16, 2448-2468.

53. De Castro, C. ; Parrilli, M. ; Holst, O. ; Molinaro, A., Microbe-associated molecular patterns in innate immunity : Extraction and chemical analysis of gram-negative bacterial lipopolysaccharides. Methods in enzymology 2010, 480, 89-115.

54. Damerell, D. ; Ceroni, A. ; Maass, K. ; Ranzinger, R. ; Dell, A. ; Haslam, S. M., The GlycanBuilder and GlycoWorkbench glycoinformatics tools : updates and new developments. Biological chemistry 2012, 393 (11), 1357-62.

55. Vliegenthart, J. F. G. ; Kamerling, J. P., ^1H NMR Structural-reporter-group concepts in carbohydrate analysis. In Comprehensive Glycoscience, Kamerling, J. P., Ed. Elsevier : Amsterdam, 2007 ; Vol. 2, pp 133-191.

56. Vliegenthart, J. F. ; van Halbeek, H. ; Dorland, L. In High resolution 1H-NMR spectroscopy in the structure analysis of carbohydrates derived from glycoproteins, 27th International Congress of Pure and Applied Chemistry, Elsevier : 1980 ; pp 253-262.

57. http://www.stenutz.eu/.

58. Castillo, A. M. ; Patiny, L. ; Wist, J., Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. Journal of Magnetic Resonance 2011, 209 (2), 123-130.

59. Kapaev, R. R. ; Toukach, P. V., Simulation of 2D NMR spectra of carbohydrates using GODESS software. ACS Publications : 2016.

60. Klukowski, P. ; Schubert, M., Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics. Bioinformatics 2019, 35 (2), 293-300.

61. http://csdb.glycoscience.ru/.

62. http://glyco3d.cermav.cnrs.fr/.

63. Marchetti, R. ; Bedini, E. ; Gully, D. ; Lanzetta, R. ; Giraud, E. ; Molinaro, A. ; Silipo, A., Rhodopseudomonas palustris Strain CGA009 Produces an O-Antigen Built up by a C-4-Branched Monosaccharide : Structural and Conformational Studies. Org. Lett 2018, 20, 3656-3660

64. Pallach, M. ; Marchetti, R. ; Di Lorenzo, F. ; Fabozzi, A. ; Giraud, E. ; Gully, D. ; Paduano, L. ; Molinaro, A. ; D’Errico, G. ; Silipo, A., Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance. Carbohydrate polymers 2018, 201, 293-299

65. Zhu, Q. ; Shen, Z. ; Chiodo, F. ; Nicolardi, S. ; Molinaro, A. ; Silipo, A. ; Yu, Biao., Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat Commun 2020, 11, 4142