Search
Close this search box.

E-chapters

References

  • Achyuthan, K.E., Achyuthan , A.M., Adams, P.D., Dirk, S.M., Harper, J.C., Simmons, B.A. & Singh, A.K. (2010). Supramolecular self-assembled chaos : polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels.  Molecules , 15, 8641-688. doi:10.3390/molecules15118641
  • Adler, E. (1977). Lignin chemistry ? Past, present and future. Wood Science and Technology ,11(3), 169-218. DOI : 10.1007/BF00365615
  • Agarwal, U.P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls : distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta,  224, 1141–53. DOI 10.1007/s00425-006-0295-z
  • Agrawal, A., Kaushik, N. & Biswas, S. (2014). Derivatives and applications of lignin – An insight. The SCITECH Journal10(7), 30-36.
  • Åkerholm, M. & Salmén, L. (2001). Interactions between wood polymers studied by dynamic FTIR spectroscopy. Polymer42, 963–69.
  • Akiyama, T., Magara, K., Matsumoto, Y., Meshitsuka, G., Ishizu, A. & Lunquist, K. (2000). Proof of the presence of racemic forms of arylglycerol-β-aryl ether in lignin : studies on the stereo structure of lignin by ozonation. Journal of Wood Science46, 414-15.
  • Alam, S., Sultana, D., Suzuki, T. & Katayama, T. (2010). Stereochemistry of erythro- and threo-syringylglycerol-8-O-4΄-(sinapyl alcohol) ethers and their enzymatic formation with optical activity in Eucommia ulmoidesEmir J Food Agric , 22, 437-47.
  • Alejandro, S., Lee, Y., Tohge, T., Sudre, D., Osorio, S., Park, J., Bovet, L., Lee, Y., Geldner, N., Fernie, A.R. & Martinoia, E. (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol22, 1207-12. doi, 10.1016/j.cub.2012.04.064
  • Atalla, R.H. & Agarwal, U.P. (1985). Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science227, 636–38.
  • Balakshin, M., Capanema, E., Gracz, H., Chang, Hou-min & Jameel, H. (2011). Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta233, 1097–1110. DOI 10.1007/s00425-011-1359-2
  • Barros, J., Serk, H., Granlund, I. & Pesquet, E. (2015) The cell biology of lignification in higher plants. Ann Bot115, 1053-74. doi.org/10.1093/aob/mcv046
  • Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B. & de Jong, E. (2007). Molecular mass determination of lignin by size-exclusion chromatogrphy : Towards standardization of the method. Holzforschung61, 459–68. DOI 10.1515/HF.2007.074
  • Berstis, L., Elder, T., Crowley, M. & Beckham, G.T. (2016) Radical nature of C-lignin. ACS Sustainable Chem Eng4 : 5327−35. DOI, 10.1021/acssuschemeng.6b00520
  • Besombes, S. &, Mazeau, K. (2004). Molecular dynamics simulations of a guaiacyl β-O-4 lignin model compound : Examination of intramolecular hydrogen bonding and conformational flexibility. Biopolymers73, 301–15. DOI : 10.1002/bip.10587
  • Besombes, S. &, Mazeau, K. (2005). The cellulose/lignin assembly assessed by molecular modeling. Part 2 : seeking for evidence of organization of lignin molecules at the interface with cellulose. Plant Physiology and Biochemistry , 43, 277–86. doi.org/10.1016/j.plaphy.2005.02.004
  • Boija,E. & Johansson, G. (2006). Interactions between model membranes and lignin related compounds studied by immobilized liposome chromatography. Biochim Biophys Acta, 1758, 620–26. doi.org/10.1016/j.bbamem.2006.04.007
  • Boerjan, W., Ralph, J. & Baucher, M. (2003). Lignin biosynthesis. Annu Rev Plant Biol,  54, 519–46. doi : 10.1146/annurev.arplant.54.031902.134938
  • Bonawitz, N.D. & Chapple, C. (2010). The genetics of lignin biosynthesis : connecting genotype to phenotype. Annu Rev Genet44, 337–63. doi : 10.1146/annurev-genet-102209-163508
  • Brandt, A., Gräsvik, J., Hallett, J.P. & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem15, 550-83. DOI : 10.1039/C2GC36364J
  • Brunow, G., Karlsson, O., Lundquist, K. & Sipilä, J. (1993). On the distribution of the diastereomers of the structural elements in lignins : the steric course of reactions mimicking lignin biosynthesis. Wood Sci Technol, 27, 281–86. doi:10.1007/BF00195305
  • Cao, Y., Shen , D., Lu, Y. & Huang, Y. (2006). A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum).  Ann Bot97, 1091–94. doi : 10.1093/aob/mcl059
  • Cerrutti, B.M., Moraes, M.L., Pulcinelli. S.H. & Santilli, C.V. (2015). Lignin as immobilisation matrix for HIV p17 peptide in immunosensing. Biosensors & Bioelectronic71, 420-26. doi : 10.1016/j.bios.2015.04.054
  • Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Joseleau ,J-P., & Boudet A.M. ( 2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant Journal28, 271-82.Retour ligne automatique
    -* Davin, L.B. & Lewis, N.G. (2000). Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol, 123, 453–61. doi : http:/​/​dx.​doi.​org/​10.​1104/​pp.​123.​2.​453
  • De Micco, V., Ruel, K. , Joseleau, J-P., Grima-Pettenati , J. & Aronne, G. (2012). Xylem anatomy and cell wall ultrastructure of Nicotiana tabacum after lignin genetic modification through high transcriptional activator EGMYB2. IAWA Journal33, 1–18.
  • Dixon, R.A., Chen, F., Guo, D. & Parvathi, K. (2001). The biosynthesis of monolignols : A “metabolic grid”, or independent pathways to guaiacyl and syringyl units. Phytochemistry , 57, 1069-84.
  • Espiñeira, J.M., Uzal. E.N., Ros, L.V.G., Carrión, J.S., Merino, F., Barceló, A.R & Pomar. F. (2011). Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol13, 59-68, doi : 10.1111/j.1438-8677.2010.00345.x.
  • Farquharson, K.L. (2013). Good Neighbor Hypothesis of lignification holds for xylemccells, but not for interfascicular fibers. Plant Cell25, 3635​, doi.​org/​10.​1105/​tpc.​113.​251010
  • Freudenberg, K. (1959). Biosynthesis and constitution of lignin. Nature183, 1152–55.
  • Freudenberg, K. (1968). In Freudenberg , K. & Neish, A.C. (eds) Constitution and biosynthesis of lignin. Springer, Berlin Heidelberg New York : 78-82.
  • Freudenberg, K. & Dietrich, R. (1953). d,l-Pinoresinol, ein weiteres zwischenprodukt der ligninbildung. Chem Ber, 86, 755-58.
  • Glasser, W.G., & Glasser, H.R. (1974). Simulation of reactions with lignin by computer (Simrel). II. A model for softwood lignin. Holzforschung28, 5–11. doi:10.1515/hfsg.1974.28.1.5
  • Goicoechea, M., Lacombe, E., Legay, S., Mihaljevic, S., Rech,P., Jauneau, A., Pollet, B., Verhaegen, D., Chaubet-Gigot, N. & Grima-Pettenati , J. (2005). EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal , 43, 553-67. DOI:10.1111/j.1365-313X.2005.02480.x
  • Fergus, B.J., Procte, A.R., Scot, J.A.N. & Goring, D.A.I. (1969). The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci.Technol, 3, 117-38. doi:10.1007/BF00639636
  • Han, Q.M., Kang, Z.S., Buchenauer, H., Huang, L.L. & Zhao, J. (2006). Cytological and immunological studies on the effects of the fungicide tebuconazole on the interaction of wheat with stripe rust. Journal of Plant Pathology , 88, 263-71.
  • Hatfield, R. & Vermerris, W. (2001). Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol, 126, 1351-57.
  • Herbette, S., Bouchet, B., Brunel, N., Bonnin, E., Cochard, H. & Guillon, F. (2015). Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula albaAnnals of Botany15, 187–99. doi,10.1093/aob/mcu232
  • Higuchi, T. (1990). Lignin biochemistry : Biosynthesis and biodegradation. Wood Sci Technol, 24, 23–63. DOI : 10.1007/BF00225306
  • Higuchi, T. (1985). Biosynthesis of lignin. In Biosynthesis and biodegradation of wood components (Acad Press Inc) pp 141-156.
  • Hiltunen, J., Kuutti, L., Rovio, S., Puhakka, E., Virtanen, T., Ohra-Aho, T. & Vuoti S (2016). Using a low melting solvent mixture to extract value from wood biomass. Scientific Reports, 6, 32420. Doi,10.1038/srep32420
  • Houtman, C.J. & Atalla, R.H. (1995). Cellulose-lignin interactions (A computational study). Plant Physiol,107(3), 977-84.
  • Iiyama, K. & Lam, T.B.T. (2001). Structural characteristics of cell walls of forage grasses – Their evaluation for ruminants – Review. Asian-Aust J Anim Sci14, 862-79.
  • Joseleau, J-P. & Kesraoui, R. (1986). Glycosidic bonds between lignin and carbohydrates. Holzforschung, 40, 163-68.
  • Joseleau, J-P., Miksche, G.E. & Yasuda, S. (1976). Structural variation of Arundo donax lignin in relation to growth. Holzforschung,31, 19-20.
  • Joseleau, J.P. & Ruel, K. (1997). Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform Infrared, CP/MAS 13C NMR spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol 114, 1123–133.
  • Joseleau, J-P. & Ruel, K. (2007). Condensed and non-condensed lignins are differentially and specifically distributed in the cell walls of softwoods, hardwoods and grasses. Cell Chem Technol,  41, 487-94.
  • Kaneda, M., Rensing, K.H., Wong, J.C.T., Banno, B., Mansfield, S.D. & Samuels, A.L. (2008). Tracking monolignols during wood development in lodgepole pine.  Plant Physiol,  147, 1750–1760, doi, 10.1104/pp.108.121533
  • Kasakov, S., Shi, H, Camaioni, D.M., Zhao, C., Baráth, E., Jentys, A. & Lercher, J.A. (2015). Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles.  Green Chem17, 5079–90. DOI : 10.1039/C5GC02160J
  • Kiyoto, S. , Yoshinaga, A., Tanaka, N., Wada, M., Kamitakahara, H. & Takabe, K. (2013). Immunolocalization of 8-5’ and 8-8’ linked structures of lignin in cell walls of Chamaecyparis obtusa using monoclonal antibodies. Planta237, 705-15. doi, 10.1007/s00425-012-1784-x.
  • Koch, G., & Schmitt, U. (2013). Topochemical and electron microscopic analyses on the lignification of individual cell wall layers during wood formation and secondary changes. In J. Fromm (ed.), Cellular Aspects of Wood Formation, Plant Cell Monographs 20 , Springer-Verlag Berlin Heidelberg, pp 41-69. doi, 10.1007/978-3-642-36491-4_2
  • Koshijima, T., & Watanabe, T. (2003). Association between lignin and carbohydrates in wood and other plant tissues. Springer Series in Wood Science, Springer, Berlin. doi.org/10.1007/978-3-662-05191-7
  • Kosikova, B., Joniak, D. & Kosikova, L. (1979). On the properties of benzyl ether bonds in lignin-saccharidic complex isolated from spruce. Holzforschung 33, 11-14.
  • Lapierre, C. , Monties, B. & Rolando, C. (1985). Thioacidolysis of lignin : Comparison with acidolysis. J Wood Chem Technol, 5, 277-92. doi.org/10.1080/02773818508085193
  • Lapierre, C., Pollet, B. & Rolando, C. (1995). New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed , 21, 397–412.
  • Lawoko, M. (2005). Lignin polysaccharide networks in softwood and chemical pulps : Characterisation, structure and reactivity. Ph D thesis, KTH, Stockholm.
  • Lawoko, M., Henriksson, G. & Gellersted,G. (2006). Characterisation of lignin carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung , 60, 156–61.
  • Lewis, N.G. & Davin, L.B. (1998). The biochemical control of monolignol coupling and structure during lignan and lignin biosynthesis. In : Lewis NG & Sarkanen S, (ed), Lignin and Lignan Biosynthesis,Vol 697, Amer. Chem. Soc. Symp. Ser. (pp. 334–361). Amer Chem Soc, Washington, DC.
  • Li, X. & Chapple, C. (2010). Understanding lignification : challenges beyond monolignol biosynthesis. Plant Physiol154, 449–452. DOI : 10.1104/pp.110.162842
  • Liu, C.J. (2012). Deciphering the enigma of lignification : precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant5, 304–17. DOI : http://dx.doi.org/10.1093/mp/ssr121
  • Lora, J.H. & Glasser, W. (2002.) Recent industrial applications of lignin : A sustainable alternative to nonrenewable materials. J Polym Environ, 10 , 39-48. doi.org/10.1023/A:1021070006895
  • Lu, F. & Ralph, J. (1997). DFRC Method for Lignin Analysis. 1. New method for β-aryl ether cleavage : Lignin model studies.  J Agric Food Chem45(7), 2590-2592. DOI : 10.1021/jf970258h
  • Lundquist, K., Langer, V. & Parkas, J. (2009). The structure and conformation of lignin as judged by X-ray crystallographic investigations of lignin model compounds : arylglycerol β-syringyl ethers. BioResources4, 529-36.
  • Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W., Somerville, C. & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol19, 169–75. doi : 10.1016/j.cub.2008.12.031
  • Nakano, Y., Yamaguchi, M., Endo, H., Rejab, N.A. & Ohtani, M. (2015). NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants.  Front Plant Sci, 20156, 288. doi : 10.3389/fpls.2015.00288
  • Njiojob, C.N., Bozell, J.J., Long, B.K., Elder, T., Key, R.E. & Hartwig, W.T. (2016.) Enantioselective Syntheses of Lignin Models : An Efficient Synthesis of β-O-4 Dimers and Trimers by Using the Evans Chiral Auxiliary. Chemistry A – European J22 (35), 12506-517. doi : 10.1002/chem.201601592
  • Oinonen, P., Zhang, L., Lawoko, M. & Hendriksson, G. (2015.) On the formation of lignin-polysaccharide networks in Norway spruce. Phytochem111, 177-84. doi. 10.1016/j.phytochem.2014.10.027
  • Önnerud, H., Zhang, L., Gellerstedt, G. & Henriksson, G. (2002). Polymerization of monolignols by redox shuttle–mediated enzymatic oxidation : A new model in lignin biosynthesis I. Plant Cell14,1953–962. doi : 10.1105/tpc.001487
  • Pan, X., Kadla, J.F., Ehara, K., Gilkes, N. & Saddler, J.N. (2006). Organosolv ethanol lignin from Hybrid poplar as a radical scavenger : relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem,  54, 5806-813.
  • Pandey, J.L., Wang, B., Diehl, B.G., Richard, T.L., Chen, G. & Anderson, C.T. (2015). A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls. PLoS ONE10, e0121334. doi:10.1371/journal.pone.0121334
  • Petridis, L. & Smith, J.C. (2010.) Towards a Computational Model of Lignocellulose : Molecular Simulation of Lignin. Biophysical J98(3), : Supplement 1, 567a. doi. http://dx.doi.org/10.1016/j.bpj.2009.12.307
  • Radotić, K., Tasić ,M., Jeremić, M., Budimlija, Z., Simić-Krstić, J., Polzović, A. & Bozović, Z. (2000). Fractal analysis of STM images of lignin polymer obtained by in vitro synthesis.  Gen Physiol Biophys19, 171-80.
  • Ragauskas,J., Beckham, G.T., Biddy, M.J., Chandra, M., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, P., Langan, M., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A. & Wyman, C.E. (2014). Lignin valorization : Improving lignin processing in the biorefinery.  Science, 344. DOI : 10.1126/science.1246843
  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Hoon, K., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H. & Boerjan, W. (2004). Lignins : natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev3, 29–60.
  • Ralph, J., Peng, J., Lu, F., Hatfield, R.D. &. Helm, R.F. (1999). Are Lignins Optically Active ? J Agric Food Chem47, 2991-96.
  • Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J. , Kennema, M., Bruijnincx, P.C.A. & Weckhuysen, B.M. (2016). Paving the way for lignin valorisation : Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie Int Ed 55 , 8164–215. doi, 10.1002/anie.201510351
  • Ros-Barcelo, A., Gomez-Ros, L.V., Ferrer, M.A. & Hernandez, J.A .(2006). The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees-Struct Funct , 20, 145-56.
  • Ruel, K. (2004). Immunolabelling of lignin sub-structures : a strategy for wood fibre wall topochemical analyses. In : Schmitt, U., Ander, P., Barnett, J.R., Emons, A.M.C., Jeronimidis, G., Saranpää, P., Tschegg, S .(eds) Wood fibre cell walls : methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 131–40.
  • Ruel, K., Berrio-Sierra, J., Derikvand, M.M., Pollet, B., Thévenin, J., Lapierre, C., Jouanin, L. & Joseleau, J-P. (2009). Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184, 99–113. doi : 10.1111/j.1469-8137.2009.02951
  • Ruel, K., Chevalier-Billosta, V., Guillemin, F., Berrio Sierra, J. & Joseleau, J-P. (2006). The wood cell wall at the ultrastructural scale- Formation and topochemical organization.  Maderas Ciencia y Tecnología8, 107-16. doi : 0718-221X
  • Ruel,K., Faix, O. & Joseleau, J-P. (1994.) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis.  J Trace Microprobe Techniques12, 247–65.
  • Sangha, A.K., Petridis, L., Smith, JeC., Ziebell, A. & Parks, J.M. (2012). Molecular simulation as a tool for studying lignin. Environmental Progress & Sustainable Energy , 31, 47-54. Doi, 10.1002/ep
  • Salmén, L. (2015). Wood morphology and properties from molecular perspectives. Annals of Forest Science72, 679-684. Doi, 10.1007/s13595-014-0403-3
  • Sederoff, R.R., MacKay ,J.J., Ralph, J. & Hatfield, R.D. (1999). Unexpected variation in lignin. Current Opinion in Plant Biology2, 145–52.
  • Sibout, R. & Höfte, H. (2012). Plant Cell Biology : The ABC of monolignol transport. Curr Biol 22, R533–R535, doi,http://dx.doi.org/10.1016/j.cub.2012.05.005
  • Smith, M.D., Petridis, L., Cheng, X., Mostofianacd, B. & Smith, J.C. (2016). Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap. Phys Chem Chem Phys18, 6394—98. Doi,10.1039/C5CP07088K
  • Smith,R.A., Schuetz, M., Roach, M., Mansfield ,S.D., Ellis, B. & Samuels, L. (2013). Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell25, 3988–99. doi : 10.1105/tpc.113.117176
  • Sørensen, I., Pettolin, F.A., Bacic, A., Ralph, J., Lu, F., O’Neill, M.A., Fei, Z., Rose, J.K., Domozych, D.S. & Willats, W.G. (2011). The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68, 201-11. doi, 10.1111/j.1365-313X.2011.04686.x.
  • Takabe, K., Fujita, M., Harada, H. & Saiki, H. (1985.) Autoradiographic investigations of lignification in the cell walls of cryptomeria (Cryptomeria japonica d. Don). Mokuzai Gakkaishi , 31, 613–19.
  • Terashima, N. & Fukushima, K. (1988). Heterogeneity in formation of lignin. XI. An autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol22, 259–70.
  • Terashima, N., Fukushima, K., He, L. & Takabe, K. (1993). Comprehensive model of the lignified plant cell wall (Madison, WI : ASA)
  • Thakur, V.K., Thakur, M.K., Raghavan, P. & Kessler, M.R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications : A Review. ACS Sustainable Chem. Eng, 1072–92. doi, 10.1021/sc500087z
  • Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes, C., Dima, O., Kim, J.I., Anderson, N., Loque, D., Boerjan, W., Chapple, C. & Ralph, J. (2013). Visualization of plant cell wall lignification using fluorescence-tagged monolignols. Plant J,  76, 357–66. doi, 10.1111/tpj.12299
  • Tolbert ,A., Akinosho, H., Khunsupat, R., Naskar, A.K. & Ragauskas, A.J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Bioref, 8, 836-56. doi, 10.1002/bbb.1500
  • Tsuyama,T., Kawai, R., Shitan, N., Matoh, T., Sugiyama, J., Yoshinaga, A., Takabe, K., Fujita, M. & Yazaki, K. (2013). Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol,  162, 918–26. doi, 10.1104/pp.113.214957
  • Vanholme R, Demedts B, Morreel K, Ralph J, & Boerjan W (2010). Lignin Biosynthesis and Structure. Plant Physiol 153, 895–905. doi : 10.1104/pp.110.155119
  • Xie, Y., Yasuda, S., Wu, H. & Liu, H. (2000). Analysis of the structure of lignin-carbohydrate complexes by specific 13C tracer method.  J Wood Sci46, 130-36. doi:10.1007/BF00777359
  • Yamaguchi, A. Isozaki, K., Nakamura, M., Takaya, H. & Watanabe, T. (2016). Discovery of 12-mer peptides that bind to wood lignin. Scientific Reports , 6 : Article number : 21833. doi,10.1038/srep21833
  • Zhang, K., Bhuiya, M-W., Rencoret Pazo, J., Miao, Y., Kim, H. & Ralph, J. (2012). An engineered monolignol 4-O-mthyltransferase depresses lignin biosynthesis and confers novel metabolic capability in arabidopsis. The Plant Cell24, 3135-152. doi, http:/​/​dx.​doi.​org/​10.​1105/​tpc.​112.​101287
  • Zhao, W., Blake, S., Singh, S., Ragauskas, A.J. & Cheng, G. (2016). From lignin association to nano-/micro-particle preparation : extracting higher value of lignin.  Green Chem18, 5693-700. doi, 10.1039/C6GC01813K
  • Zhong, R. & Ye, Z-E. (2015). Secondary cell walls : biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol , 56, 195–214. doi,10.1093/pcp/pcu140
  • Zhong, R., Lee, C. & Ye, Z.-H. (2010). Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci15, 625–31.
  • Zhou, Y., Stuart, W. H., Farquhar, G.D. & Hocart, C.H. (2010). The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls. Phytochemistry , 71, 982-93. doi, 10.1016/j.phytochem.2010.03.001