References
References
- Abdu-allah, H. H. M., Watanabe, K., Completo, G. C., Sadagopan, M., Hayashizaki, K., Takaku, C., Tamanaka, T., Takematsu, H., Kozutsumi, Y., Paulson, J. C., Tsubata, T., Ando, H., Ishida, H., & Kiso, M. (2011). CD22-Antagonists with nanomolar potency : the synergistic effect of hydrophobic groups at C-2 and C-9 of sialic acid scaffold. Bioorganic & Medicinal Chemistry, 19(6), 1966–1971. https://doi.org/10.1016/j.bmc.2011.01.060
- Abdu-Allah, H. H. M., Wu, S. C., Lin, C. H., & Tseng, Y. Y. (2020). Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. European Journal of Medicinal Chemistry, 208, 112707. https://doi.org/10.1016/j.ejmech.2020.112707
- Adeel, K., Fergusson, N. J., Shorr, R., Atkins, H., & Hay, K. A. (2021). Efficacy and safety of CD22 chimeric antigen receptor (CAR) T cell therapy in patients with B cell malignancies : a protocol for a systematic review and meta-analysis. Systematic Reviews, 10(1), 35. https://doi.org/10.1186/s13643-021-01588-7
- Adeniji, O. S., Kuri-Cervantes, L., Yu, C., Xu, Z., Ho, M., Chew, G. M., Shikuma, C., Tomescu, C., George, A. F., Roan, N. R., Ndhlovu, L. C., Liu, Q., Muthumani, K., Weiner, D. B., Betts, M. R., Xiao, H., & Abdel-Mohsen, M. (2021). Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathogens, 17(11), e1010034. https://doi.org/10.1371/journal.ppat.1010034
- Ali, S. R., Fong, J. J., Carlin, A. F., Busch, T. D., Linden, R., Angata, T., Areschoug, T., Parast, M., Varki, N., Murray, J., Nizet, V., & Varki, A. (2014). Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. Journal of Experimental Medicine, 211(6), 1231–1242. https://doi.org/10.1084/jem.20131853
- Altrichter, S., Staubach, P., Pasha, M., Rasmussen, H., Singh, B., Chang, A., Bernstein, J. Siebenhaar, F., & Maurer, M. (2019). Efficacy and safety data of AK002, an anti-siglec-8 monoclonal antibody, in patients with multiple forms of uncontrolled chronic urticaria (CU) : Results from an open-label phase 2a study. Allergy, 74, 117–129.
- Angata, T., Y., Nakamura, K., & Nakamura, M. (2007). Siglec-15 : an immune system Siglec conserved throughout vertebrate evolution. Glycobiology, 17(8), 838–846. https://doi.org/10.1093/glycob/cwm049
- Angata, T. (2006). Molecular diversity and evolution of the Siglec family of cell-surface lectins. Molecular Diversity, 10(4), 555–566. https://doi.org/10.1007/s11030-006-9029-1
- Angata, T. (2020). Siglec-15 : a potential regulator of osteoporosis, cancer, and infectious diseases. Journal of Biomedical Science, 27(1), 10. https://doi.org/10.1186/s12929-019-0610-1
- Angata, T., Hayakawa, T., Yamanaka, M., Varki, A., & Nakamura, M. (2006). Discovery of Siglec‐14, a novel sialic acid receptor undergoing concerted evolution with Siglec‐5 in primates. The FASEB Journal, 20(12), 1964–1973. https://doi.org/10.1096/fj.06-5800com
- Angata, T.,, Kerr, S. C., Greaves, D. R., Varki, N. M., Crocker, P. R., & Varki, A. (2002). Cloning and characterization of human Siglec-11. Journal of Biological Chemistry, 277(27), 24466–24474. https://doi.org/10.1074/jbc.M202833200
- Angata, Takashi, Margulies, E. H., Green, E. D., & Varki, A. (2004). Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc. Natl. Acad. Sci., 101(36), 13251–13256. https://doi.org/10.1073/pnas.0404833101
- Angata, T., Nycholat, C. M., & Macauley, M. S. (2015). Therapeutic Targeting of Siglecs using Antibody- and Glycan-Based Approaches. Trends in Pharmacological Sciences, 36(10), 645–660. https://doi.org/10.1016/j.tips.2015.06.008
- Attrill, H., Imamura, A., Sharma, R. S., Kiso, M., Crocker, P. R., & Van Aalten, D. M. F. (2006). Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. Journal of Biological Chemistry, 281(43), 32774–32783. https://doi.org/10.1074/jbc.M601714200
- Barbay, S., Plautz, E. J., Zoubina, E., Frost, S. B., Cramer, S. C., & Nudo, R. J. (2015). Effects of Postinfarct Myelin-Associated Glycoprotein Antibody Treatment on Motor Recovery and Motor Map Plasticity in Squirrel Monkeys. Stroke, 46(6), 1620–1625. https://doi.org/10.1161/STROKEAHA.114.008088
- Barkal, A. A., Brewer, R. E., Markovic, M., Kowarsky, M., Barkal, S. A., Zaro, B. W., Krishnan, V., Hatakeyama, J., Dorigo, O., Barkal, L. J., & Weissman, I. L. (2019). CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature, 572(7769), 392–396. https://doi.org/10.1038/s41586-019-1456-0
- Benmerzoug, S., Chevalier, M. F., Verardo, M., Nguyen, S., Cesson, V., Schneider, A. K., Dartiguenave, F., Rodrigues-Dias, S. C., Lucca, I., Jichlinski, P., Roth, B., Nardelli-Haefliger, D., & Derré, L. (2021). Siglec-6 as a New Potential Immune Checkpoint for Bladder Cancer Patients. European Urology Focus, S2405-4569, Online ahead of print. https://doi.org/10.1016/j.euf.2021.06.001
- Bhattacherjee, A., Rodrigues, E., Jung, J., Luzentales-Simpson, M., Enterina, J. R., Galleguillos, D., St. Laurent, C. D., Nakhaei-Nejad, M., Fuchsberger, F. F., Streith, L., Wang, Q., Kawasaki, N., Duan, S., Bains, A., Paulson, J. C., Rademacher, C., Giuliani, F., Sipione, S., & Macauley, M. S. (2019). Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Communications Biology, 2, 450. https://doi.org/10.1038/s42003-019-0698-6
- Biesen, R., Demir, C., Barkhudarova, F., Grün, J. R., Steinbrich-Zöllner, M., Backhaus, M., Häupl, T., Rudwaleit, M., Riemekasten, G., Radbruch, A., Hiepe, F., Burmester, G. R., & Grützkau, A. (2008). Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum., 58(4), 1136–1145. https://doi.org/10.1002/art.23404
- Blixt, O., Collins, B. E., van den Nieuwenhof, I. M., Crocker, P. R., & Paulson, J. C. (2003). Sialoside specificity of the siglec family assessed using novel multivalent probes : identification of potent inhibitors of myelin-associated glycoprotein. The Journal of Biological Chemistry, 278(33), 31007–31019. https://doi.org/10.1074/jbc.M304331200
- Bochner, B. S., Alvarez, R. A., Mehta, P., Bovin, N. V, Blixt, O., White, J. R., & Schnaar, R. L. (2005). Glycan Array Screening Reveals a Candidate Ligand for Siglec-8. The Journal of Biological Chemistry, 280(6), 4307–4312. https://doi.org/10.1074/jbc.M412378200
- Bornhöfft, K. F., Goldammer, T., Rebl, A., & Galuska, S. P. (2018). Siglecs : A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Developmental and Comparative Immunology, 86, 219–231. https://doi.org/10.1016/j.dci.2018.05.008
- Briard, J. G., Jiang, H., Moremen, K. W., MacAuley, M. S., & Wu, P. (2018). Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Nature Communications, 9(1), 880. https://doi.org/10.1038/s41467-018-03245-5
- Brinkman-Van Der linden, E. C. M., Hurtado-Ziola, N., Hayakawa, T., Wiggleton, L., Benirschke, K., Varki, A., & Varki, N. (2007). Human-specific expression of Siglec-6 in the placenta. Glycobiology, 17(9), 922–931. https://doi.org/10.1093/glycob/cwm065
- Büll, C., den Brok, M. H., & Adema, G. J. (2014). Sweet escape : Sialic acids in tumor immune evasion. Biochimica et Biophysica Acta, 1846(1), 238–246. https://doi.org/10.1016/j.bbcan.2014.07.005
- Büll, C., Heise, T., Adema, G. J., & Boltje, T. J. (2016). Sialic Acid Mimetics to Target the Sialic Acid–Siglec Axis. Trends in Biochemical Sciences, 41(6), 519–531. https://doi.org/10.1016/j.tibs.2016.03.007
- Büll, C., Heise, T., van Hilten, N., Pijnenborg, J. F. A., Bloemendal, V. R. L. J., Gerrits, L., Kers-Rebel, E. D., Ritschel, T., den Brok, M. H., Adema, G. J., & Boltje, T. J. (2017). Steering Siglec–Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry. Angewandte Chemie - International Ed. in English, 56(12), 3309–3313. https://doi.org/10.1002/anie.201612193
- Cao, H., Lakner, U., de Bono, B., Traherne, J. A., Trowsdale, J., & Barrow, A. D. (2008a). SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counter- part SIGLEC11 and has functional and non-functional alleles in humans. European Journal of Immunology, 38(8), 2303–2315. https://doi.org/10.1002/eji.200738078
- Cao, H., Lakner, U., de Bono, B., Traherne, J., Trowsdale, J., & Barrow, A. (2008b). SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counter- part SIGLEC11 and has functional and non-functional alleles in humans. European Journal of Immunology, 38(8), 2303–2315. https://doi.org/10.1002/eji.200738078
- Carlin, A. F., Chang, Y. C., Areschoug, T., Lindahl, G., Hurtado-Ziola, N., King, C. C., Varki, A., & Nizet, V. (2009). Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. Journal of Experimental Medicine, 206(8), 1691–1699. https://doi.org/10.1084/jem.20090691
- Chang, Y. C., & Nizet, V. (2014). The interplay between Siglecs and sialylated pathogens. Glycobiology, 24(9), 818–825. https://doi.org/10.1093/glycob/cwu067
- Chang, Y., & Nizet, V. (2020). Siglecs at the Host–Pathogen Interface. Advances in Experimental Medicine and Biology, 1204, 197–214. https://doi.org/10.1007/978-981-15-1580-4_8
- Chang, Y., Olson, J., Louie, A., Crocker, P. R., Varki, A., & Nizet, V. (2014). Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B Streptococcus. Journal of Molecular Medicine, 92(9), 951–959. https://doi.org/10.1007/s00109-014-1157-y
- Chen, W. C., Completo, G. C., Sigal, D. S., Crocker, P. R., Saven, A., & Paulson, J. C. (2010). In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood, 115(23), 4778–4786. https://doi.org/10.1182/blood-2009-12-257386
- Chen, Z., Bai, F. F., Han, L., Zhu, J., Zheng, T., Zhu, Z., & Zhou, L.-F. (2018). Targeting neutrophils in severe asthma via Siglec-9. International Archives of Allergy and Immunology, 175(1–2), 5–15. https://doi.org/10.1159/000484873
- Clark, E. A., & Giltiay, N. V. (2018). CD22 : A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Frontiers in Immunology, 9, 2235. https://doi.org/10.3389/fimmu.2018.02235
- Collins, B. E., Blixt, O., DeSieno, A. R., Bovin, N., Marth, J. D., & Paulson, J. C. (2004). Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6104–6109. https://doi.org/10.1073/pnas.0400851101
- Collins, B. E., Blixt, O., Han, S., Duong, B., Li, H., Nathan, J. K., Bovin, N., & Paulson, J. C. (2006). High-Affinity Ligand Probes of CD22 Overcome the Threshold Set by cis Ligands to Allow for Binding, Endocytosis, and Killing of B Cells. The Journal of Immunology, 177(5), 2994–3003. https://doi.org/10.4049/jimmunol.177.5.2994
- Cornish, A. L., Freeman, S., Forbes, G., Ni, J., Zhang, M., Cepeda, M., Gentz, R., Augustus, M., Carter, K. C., & Crocker, P. R. (1998). Characterization of Siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood, 92(6), 2123–2132. https://doi.org/10.1182/blood.v92.6.2123
- Cramer, S. C., Enney, L. A., Russell, C. K., Simeoni, M., & Thompson, T. R. (2017). Proof-of-Concept Randomized Trial of the Monoclonal Antibody GSK249320 Versus Placebo in Stroke Patients. Stroke, 48(3), 692–698. https://doi.org/10.1161/STROKEAHA.116.014517
- Crocker, P.R., Kelm, S., Dubois, C., Martin, B., McWilliam, A. S., Shotton, D. M., Paulson, J. C., & Gordon, S. (1991). Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. The EMBO Journal, 10(7), 1661–1669. https://doi.org/10.1002/j.1460-2075.1991.tb07689.x
- Crocker, P.R, Mucklow, S., Bouckson, V., McWilliam, A., Willis, A. C., Gordon, S., Milon, G., Kelm, S., & Bradfield, P. (1994). Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J, 13(19), 4490–4503.
- Crocker, P.R., McMillan, S. J., & Richards, H. E. (2012). CD33-related siglecs as potential modulators of inflammatory responses. Annals of the New York Academy of Sciences, 1253, 102–111. https://doi.org/10.1111/j.1749-6632.2011.06449.x
- Crocker, P.R., Paulson, J. C., & Varki, A. (2007). Siglecs and their roles in the immune system. Nature Reviews Immunology, 7(4), 255–266. https://doi.org/10.1038/nri2056
- Crocker, P.R, Vinson, M., Kelm, S., & Drickamer, K. (1999). Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochemical Journal, 341(Pt. 2), 355–361.
- Daly, J., Carlsten, M., & O’Dwyer, M. (2019). Sugar free : Novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Frontiers in Immunology, 10, 1047. https://doi.org/10.3389/fimmu.2019.01047
- Delaveris, C. S., Wilk, A. J., Riley, N. M., Stark, J. C., Yang, S. S., Rogers, A. J., Ranganath, T., Nadeau, K. C., Blish, C. A., & Bertozzi, C. R. (2021). Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS Central Science, 7(4), 650–657. https://doi.org/10.1021/acscentsci.0c01669
- Dellon, E. S., Peterson, K. A., Murray, J. A., Falk, G. W., Gonsalves, N., Chehade, M., Genta, R. M., Leung, J., Khoury, P., Klion, A. D., Hazan, S., Vaezi, M., Bledsoe, A. C., Durrani, S. R., Wang, C., Shaw, C., Chang, A. T., Singh, B., Kamboj, A. P., … Hirano, I. (2020). Anti-Siglec-8 Antibody for Eosinophilic Gastritis and Duodenitis. The New England Journal of Medicine, 383(17), 1624–1634. https://doi.org/10.1056/NEJMoa2012047
- Dörner, T., Shock, A., & Smith, K. G. C. (2012). CD22 and autoimmune disease. International Reviews of Immunology, 31(5), 363–378. https://doi.org/10.3109/08830185.2012.709890
- Duan, S., Arlian, B. M., Nycholat, C. M., Wei, Y., Tateno, H., Smith, S. A., Macauley, M. S., Zhu, Z., Bochner, B. S., & Paulson, J. C. (2021). Nanoparticles Displaying Allergen and Siglec-8 Ligands Suppress IgE-FcεRI–Mediated Anaphylaxis and Desensitize Mast Cells to Subsequent Antigen Challenge. The Journal of Immunology, 206(10), 2290–2300. https://doi.org/10.4049/jimmunol.1901212
- Duan, S., Koziol-White, C. J., Jester, W. F., Smith, S. A., Nycholat, C. M., Macauley, M. S., Panettieri, R. A., & Paulson, J. C. (2019). CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. Journal of Clinical Investigation, 129(3), 1387–1401. https://doi.org/10.1172/JCI125456
- Duan, S., & Paulson, J. C. (2020). Siglecs as Immune Cell Checkpoints in Disease. Annual Review of Immunology, 38, 365–395. https://doi.org/10.1146/annurev-immunol-102419-035900
- Eakin, A. J., Bustard, M. J., McGeough, C. M., Ahmed, T., Bjourson, A. J., & Gibson, D. S. (2016). Siglec-1 and -2 as potential biomarkers in autoimmune disease. Proteomics. Clinical Applications, 10(6), 635–644. https://doi.org/10.1002/prca.201500069
- Edgar, L. J., Kawasaki, N., Nycholat, C. M., & Paulson, J. C. (2019). Targeted Delivery of Antigen to Activated CD169+ Macrophages Induces Bias for Expansion of CD8+ T Cells. Cell Chemcial Biology, 26(1), 131–136. https://doi.org/10.1016/j.chembiol.2018.10.006
- Ehninger, A., Kramer, M., Röllig, C., Thiede, C., Bornhäuser, M., Von Bonin, M., Wermke, M., Feldmann, A., Bachmann, M., Ehninger, G., & Oelschlägel, U. (2014). Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer Journal, 4(6), e218. https://doi.org/10.1038/bcj.2014.39
- Engin, A. B., Engin, E. D., & Engin, A. (2020). Dual function of sialic acid in gastrointestinal SARS-CoV-2 infection. Environmental Toxicology and Pharmacology, 79, 103436. https://doi.org/10.1016/j.etap.2020.103436
- Enterina, J. R., Jung, J., & Macauley, M. S. (2019). Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomedical Journal, 42(4), 218–232. https://doi.org/10.1016/j.bj.2019.07.010
- Ereño-Orbea, J., Sicard, T., Cui, H., Mazhab-Jafari, M. T., Benlekbir, S., Guarné, A., Rubinstein, J. L., & Julien, J. P. (2017). Molecular basis of human CD22 function and therapeutic targeting. Nature Communications, 8(1), 764. https://doi.org/10.1038/s41467-017-00836-6
- Floyd, H., Ni, J., Cornish, A. L., Zeng, Z., Liu, D., Carter, K. C., Steel, J., & Crocker, P. R. (2000). Siglec-8. A novel eosinphil-specific member of the immunoglobulin superfamily. The Journal of Biological Chemistry, 275(2), 861–866. https://doi.org/10.1074/jbc.275.2.861
- Forgione, R. E., Di Carluccio, C., Guzmán-Caldentey, J., Gaglione, R., Battista, F., Chiodo, F., Manabe, Y., Arciello, A., Del Vecchio, P., Fukase, K., Molinaro, A., Martín-Santamaría, S., Crocker, P. R., Marchetti, R., & Silipo, A. (2020). Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. IScience, 23(6), 101231. https://doi.org/10.1016/j.isci.2020.101231
- Fraschilla, I., & Pillai, S. (2017). Viewing Siglecs through the lens of tumor immunology. Immunological Reviews, 276(1), 178–191. https://doi.org/10.1111/imr.12526
- Freeman, S. D., Kelm, S., Barber, E. K., & Crocker, P. R. (1995). Characterization of CD33 as a new member of the Sialoadhesin family of cellular interaction molecules. Blood, 85(8), 2005–2012. https://doi.org/10.1182/blood.v85.8.2005.bloodjournal8582005
- Fuster, M. M., & Esko, J. D. (2005). The sweet and sour of cancer : glycans as novel therapeutic targets. Nature Reviews Cancer, 5(7), 526–542. https://doi.org/10.1038/nrc1649
- Gao, P., Shimizu, K., Grant, A. V, Rafaels, N., Zhou, L., Hudson, S. A., Konno, S., Zimmermann, N., Araujo, M. I., Ponte, E. V, Cruz, A. A., Nishimura, M., Su, S., Hizawa, N., Beaty, T. H., Mathias, R. A., Rothenberg, M. E., Barnes, K. C., & Bochner, B. S. (2010). Polymorphisms in the sialic acid-binding are associated with susceptibility to asthma. European Journal of Human Genetics, 18(6), 713–719. https://doi.org/10.1038/ejhg.2009.239
- Gebremeskel, S., Schanin, J., Coyle, K. M., Butuci, M., Luu, T., Brock, E. C., Xu, A., Wong, A., Leung, J., Korver, W., Morin, R. D., Schleimer, R. P., Bochner, B. S., & Youngblood, B. A. (2021). Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation : Implications for an Anti-Siglec-8 Antibody. Frontiers in Immunology, 12, 650331. https://doi.org/10.3389/fimmu.2021.650331
- Geh, D., & Gordon, C. (2018). Epratuzumab for the treatment of systemic lupus erythematosus. Expert Review of Clinical Immunology, 14(4), 245–258. https://doi.org/10.1080/1744666X.2018.1450141
- Gianchecchi, E., Arena, A., & Fierabracci, A. (2021). Sialic Acid-Siglec Axis in Human Immune Regulation, Involvement in Autoimmunity and Cancer and Potential Therapeutic Treatments. International Journal of Molecular Sciences, 22(11), 5774. https://doi.org/10.3390/ijms22115774
- Gieseke, F., Mang, P., Viebahn, S., Sonntag, I., Kruchen, A., Erbacher, A., Pfeiffer, M., Handgretinger, R., & Müller, I. (2012). Siglec-7 tetramers characterize b-cell subpopulations and leukemic blasts. European Journal of Immunology, 42(8), 2176–2186. https://doi.org/10.1002/eji.201142298
- Gottenberg, J. E., Dörner, T., Bootsma, H., Devauchelle-Pensec, V Bowman, S. J., Mariette, X., Bartz, H., Oortgiesen, M., Shock, A., Koetse, W., Galateanu, C., Bongardt, S., Wegener, W. A., Goldenberg, D. M., Meno-Tetang, G., Kosutic, G., & Gordon, C. (2018). Efficacy of epratuzumab, an anti-CD22 monoclonal IgG antibody, in systemic lupus erythematosus patients with associated sjogren’s syndrome : post hoc analyses from the EMBODY trials. Arthritis Rheum., 70(5), 763–773. https://doi.org/10.1002/art.40425
- Griciuc, A., Serrano-Pozo, A., Parrado, A. R., Lesinski, A. N., Asselin, C. N., Mullin, K., Hooli, B., Choi, S. H., Hyman, B. T., & Tanzi, R. E. (2013). Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron, 78(4), 631–643. https://doi.org/10.1016/j.neuron.2013.04.014
- Gummuluru, S., Pina Ramirez, N. G., & Akiyama, H. (2014). CD169-dependent cell-associated HIV-1 transmission : a driver of virus dissemination. Journal of Infectious Diseases, 210((Suppl 3)), S641–S647. https://doi.org/10.1093/infdis/jiu442
- Haas, Q., Boligan, K. F., Jandus, C., Schneider, C., Simillion, C., Stanczak, M. A., Haubitz, M., Jafari, S. M. S., Zippelius, A., Baerlocher, G. M., Laubli, H., Hunger, R. E., Romero, P., Simon, H.-U., & von Gunten, S. (2019). Siglec-9 Regulates an Effector Memory CD8+ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment. Cancer Immunology Research, 7(5), 707–718. https://doi.org/10.1158/2326-6066.CIR-18-0505
- Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D. G., & Crocker, P. R. (2001). Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflam- matory macrophage populations. Blood, 97(1), 288–296. https://doi.org/10.1182/blood.v97.1.288
- Heida, R., Bhide, Y. C., Gasbarri, M., Kocabiyik, Ö., Stellacci, F., Huckriede, A. L. W., Hinrichs, W. L. J., & Frijlink, H. W. (2021). Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discovery Today, 26(1), 122–137. https://doi.org/10.1016/j.drudis.2020.10.009
- Hudak, J. E., Canham, S. M., & Bertozzi, C. R. (2014). Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nature Chemical Biology, 10(1), 69–75. https://doi.org/10.1038/nchembio.1388
- Jandus, C., Boligan, K. F., Chijioke, O., Liu, H., Dahlhaus, M., Démoulins, T., Schneider, C., Wehrli, M., Hunger, R. E., Baerlocher, G. M., Simon, H. U., Romero, P., Münz, C., & Von Gunten, S. (2014). Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. Journal of Clinical Investigation, 124(4), 1810–1820. https://doi.org/10.1172/JCI65899
- Jandus, C., Simon, H., & Gunten, S. Von. (2011). Targeting Siglecs — A novel pharmacological strategy for immuno- and glycotherapy. Biochemical Pharmacology, 82(4), 323–332. https://doi.org/10.1016/j.bcp.2011.05.018
- Jia, Y., Yu, H., Fernandes, S. M., Wei, Y., Gonzalez-gil, A., Bochner, B. S., Kern, R. C., Schleimer, R. P., & Schnaar, R. L. (2015). Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. Journal of Allergy and Clinical Immunology, 135(3), 799–810. https://doi.org/10.1016/j.jaci.2015.01.004
- Kantarjian, H. M., DeAngelo, D. J., Stelljes, M., Martinelli, G., Liedtke, M., Stock, W., Gökbuget, N., O’Brien, S., Wang, K., Wang, T., Paccagnella, M. L., Sleight, B., Vandendries, E., & Advani, A. S. (2016). Inotuzumab ozogamicin versus standard therapy for acute lym-phoblastic leukemia. The New England Journal of Medicine, 375(8), 740–753. https://doi.org/10.1056/NEJMoa1509277
- Kelm, S, Brossmer, R., Isecke, R., Gross, H. J., Strenge, K., & Schauer, R. (1998). Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. European Journal of Biochemistry, 255(3), 663–672. https://doi.org/10.1046/j.1432-1327.1998.2550663.x.
- Kelm, S., Gerlach, J., Brossmer, R., Danzer, C., & Nitschke, L. (2002). The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. Journal of Experimental Medicine, 195(9), 1207–1213. https://doi.org/10.1084/jem.20011783
- Kelm, S., Madge, P., Islam, T., Bennett, R., Koliwer-Brandl, H., Waespy, M., Von Itzstein, M., & Haselhorst, T. (2013). C-4 modified sialosides enhance binding to Siglec-2 (CD22) : Towards potent Siglec inhibitors for immunoglycotherapy. Angewandte Chemie - International Edition, 52(13), 3616–3620. https://doi.org/10.1002/anie.201207267
- Kelm, S., Pelz, A., Schauer, R., Filbin, M. T., Tang, S., Bellard, M.-E. de, Schnaar, R. L., Mahoney, J. A., Hartnell, A., Bradfield, P., & Crocker, P. R. (1994). Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immu- noglobulin superfamily. Current Biology, 4(11), 965–972. https://doi.org/10.1016/s0960-9822(00)00220-7
- Kikly, K. K., Bochner, B. S., Freeman, S. D., Tan, K. B., Gallagher, K. T., D’alessio, K. J., Holmes, S. D., Abrahamson, J. A., Erickson-Miller, C L Murdock, P. R., Tachimoto, H., Schleimer, R. P., & White, J. R. (2000). Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. Journal of Allergy and Clinical Immunology, 105(6 (Pt 1)), 1093–1100. https://doi.org/10.1067/mai.2000.107127
- Kimura, N., Ohmori, K., Miyazaki, K., Izawa, M., Matsuzaki, Y., Yasuda, Y., Takematsu, H., Kozutsumi, Y., Moriyama, A., & Kannagi, R. (2007). Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. The Journal of Biological Chemistry, 282(44), 32200–32207. https://doi.org/10.1074/jbc.M702341200
- Klaas, M., Oetke, C., Lewis, L. E., Lars, P., Heikema, A. P., Easton, A., Willison, H. J., & Crocker, P. R. (2012). Sialoadhesin Promotes Rapid Proinflammatory and Type I IFN Responses to a Sialylated Pathogen, Campylobacter jejuni. The Journal of Immunology, 189(5), 2414–2422. https://doi.org/10.4049/jimmunol.1200776
- Kovalovsky, D., Yoon, J. H., Cyr, M. G., Simon, S., Voynova, E., Rader, C., Wiestner, A., Alejo, J., Pittaluga, S., & Gress, R. E. (2021). Siglec-6 is a target for chimeric antigen receptor T-cell treatment of chronic lymphocytic leukemia. Leukemia, 35(9), 2581–2591. https://doi.org/10.1038/s41375-021-01188-3
- Kroezen, B. S., Conti, G., Girardi, B., Cramer, J., Jiang, X., Rabbani, S., Müller, J., Kokot, M., Luisoni, E., Ricklin, D., Schwardt, O., & Ernst, B. (2020). A Potent Mimetic of the Siglec-8 Ligand 6’-Sulfo-Sialyl Lewisx. ChemMedChem, 15(18), 1706–1719. https://doi.org/10.1002/cmdc.202000417
- Lai, C., Brow, M. A., Nave, K. A., Noronha, A. B., Quarles, R. H., Bloom, F. E., Milner, R. J., & Sutcliffe, J. G. (1987). Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc. Natl. Acad. Sci. USA, 84(12), 4337–4341. https://doi.org/10.1073/pnas.84.12.4337
- Landolina, N., Zaffran, I., Smiljkovic, D., Serrano-Candelas, E., Schmiedel, D., Friedman, S., Arock, M., Hartmann, K., Pikarsky, E., Mandelboim, O., Martin, M., Valent, P., & Levi-Schaffer, F. (2020). Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacological Research, 158, 104682. https://doi.org/10.1016/j.phrs.2020.104682
- Läubli, H., Kawanishi, K., George Vazhappilly, C., Matar, R., Merheb, M., & Siddiqui, S. S. (2020). Tools to study and target the Siglec-sialic acid axis in cancer. The FEBS Journal, 288(21), 6206–6225. https://doi.org/10.1111/febs.15647
- Läubli, H., & Varki, A. (2020). Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cellular and Molecular Life Sciences, 77(4), 593–605. https://doi.org/10.1007/s00018-019-03288-x
- Legrand, F., Landolina, N., Zaffran, I., Emeh, R. O., Chen, E., Klion, A. D., & Levi-Schaffer, F. (2019). Siglec-7 on peripheral blood eosinophils : surface expression and function. Allergy : European Journal of Allergy and Clinical Immunology, 74(7), 1257–1265. https://doi.org/10.1111/all.13730
- Lenza, M. P., Atxabal, U., Oyenarte, I., Jiménez-Barbero, J., & Ereño-Orbea, J. (2020). Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells, 9(12), 2691. https://doi.org/10.3390/cells9122691
- Leonard, J. P., & Goldenbergm, D. M. (2007). Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene, 26(25), 3704–3713. https://doi.org/10.1038/sj.onc.1210370
- Levine, H. T., Tauber, J., Nguyen, Q., & Anesi, S. D. (2020). Phase 1b Study of AK002, an Anti-Siglec-8 (1) Levine, H. T. ; Tauber, J. ; Nguyen, Q. ; Anesi, S. D. Phase 1b Study of AK002, an Anti-Siglec-8 Monoclonal Antibody, in Patients with Severe Allergic Conjunctivitis (KRONOS Study). Journal of Allergy and Clinical Immunology, 145(2), AB185. https://doi.org/10.1016/j.jaci.2019.12.323
- Li, N., Zhang, W., Wan, T., Zhang, J., Chen, T., Yu, Y., Wang, J., & Cao, X. (2001). Clo ning and Characterization of Siglec-10, a Novel Sialic Acid Binding Member of the Ig Superfamily, from Human Dendritic Cells. Journal of Biological Chemistry, 276(30), 28106–28112. https://doi.org/10.1074/jbc.M100467200
- Linnartz, B., Wang, Y., & Neumann, H. (2010). Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. International Journal of Alzheimer’s Disease, 2010, 587463. https://doi.org/10.4061/2010/587463.
- Lock, K., Zhang, J., Lu, J., Lee, S. H., & Crocker, P. R. (2004). Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology, 209(1–2), 199–207. https://doi.org/10.1016/j.imbio.2004.04.007
- Lopez, P. H. H. (2014). Role of myelin-associated glycoprotein (siglec-4a) in the nervous system. Advances in Neurobiology, 9, 245–262. https://doi.org/10.1007/978-1-4939-1154-7_11
- Maakaron, J. E., Rogosheske, J., Long, M., Bachanova, V., & Mims, A. S. (2021). CD33-Targeted Therapies : Beating the Disease or Beaten to Death ? Journal of Clinical Pharmacology, 61(1), 7–17. https://doi.org/10.1002/jcph.1730
- Macauley, M. S., Crocker, P. R., & Paulson, J. C. (2014). Siglec-mediated regulation of immune cell function in disease. Nature Reviews Immunology, 14(10), 653–666. https://doi.org/10.1038/nri3737
- Macauley, M. S., Kawasaki, N., Peng, W., Wang, S. H., He, Y., Arlian, B. M., McBride, R., Kannagi, R., Khoo, K. H., & Paulson, J. C. (2015). Unmasking of CD22 co-receptor on germinal center B-cells occurs by alternative mechanisms in mouse and man. Journal of Biological Chemistry, 290(50), 30066–30077. https://doi.org/10.1074/jbc.M115.691337
- Macauley, M. S., & Paulson, J. C. (2014). Immunology : glyco-engineering “super-self.” Nature Chemical Biology, 10(1), 7–8. https://doi.org/10.1038/nchembio.1415
- Macauley, M. S., Pfrengle, F., Rademacher, C., Nycholat, C. M., Gale, A. J., Von Drygalski, A., & Paulson, J. C. (2013). Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. Journal of Clinical Investigation, 123(7), 3074–3083. https://doi.org/10.1172/JCI69187
- Maggi, E., & Moretta, L. (2020). Siglec-7, a target for novel therapeutical approaches of Systemic Mastocytosis. Pharmacological Research, 158, 104731. https://doi.org/10.1016/j.phrs.2020.104731
- Matsubara, N., Imamura, A., Yonemizu, T., Akatsu, C., Yang, H., Ueki, A., Watanabe, N., Abdu-Allah, A., Numoto, N., Takematsu, H., Kitazume, S., Tedder, T. F., Marth, J. D., Ito, N., Ando, H., Ishida, H., Kiso, M., & Tsubata, T. (2018). CD22- Binding synthetic sialosides regulate B lymphocyte proliferation through CD22 ligand-dependent and independent pathways, and enhance antibody production in mice. Frontiers in Immunology, 9, 820. https://doi.org/10.3389/fimmu.2018.00820
- May, A. P., Robinson, R. C., Vinson, M., Crocker, P. R., & Jones, E. Y. (1998). Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′ sialyllactose at 1.85 A resolution. Molecular Cell, 1(5), 719–728. https://doi.org/10.1016/S1097-2765(00)80071-4
- McDonald, D., Wu, L., Bohks, S. M., KewalRamani, V. N., Unutmaz, D., & Hope, T. J. (2003). Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science, 300(5623), 1295–1297. https://doi.org/10.1126/science.1084238
- McKerracher, L., & Rosen, K. M. (2015). MAG, myelin and overcoming growth inhibition in the CNS. Frontiers in Molecular Neuroscience, 8, 51. https://doi.org/10.3389/fnmol.2015.00051
- Mesch, S., Moser, D., Strasser, D. S., Kelm, A., Cutting, B., Rossato, G., Vedani, A., Koliwer-Brandl, H., Wittwer, M., Rabbani, S., Schwardt, O., Kelm, S., & Ernst, B. (2010). Low molecular weight antagonists of the myelin-associated glycoprotein : synthesis, docking, and biological evaluation. Journal of Medicinal Chemistry, 53(4), 1597–1615. https://doi.org/10.1021/jm901517k
- Miles, L. A., Hermans, S. J., Gabriela, A. N., Nancy, N. C., Parker, W., Miles, L. A., Hermans, S. J., Crespi, G. A. N., Gooi, J. H., Doughty, L., Nero, T. L., Markuli, J., Ebneth, A., Wroblowski, B., Oehlrich, D., Trabanco, A. A., Rives, M. L., Royaux, I., N, H., & Parker, M. W. (2019). Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Aβ Phagocytosis. IScience, 19, 110–118. https://doi.org/10.1016/j.isci.2019.07.023
- Movsisyan, L. D., & Macauley, M. S. (2020). Structural advances of Siglecs : insight into synthetic glycan ligands for immunomodulation. Organic & Biomolecular Chemistry, 18(30), 5784–5797. https://doi.org/10.1039/d0ob01116a
- Munday, J., Floyd, H., & Crocker, P. R. (1999). Sialic acid binding receptors (siglecs) expressed by macrophages. Journal of Leukocyte Biology, 66(5), 705–711. https://doi.org/10.1002/jlb.66.5.705
- Nakamura, K., Yamaji, T., Crocker, P. R., Suzuki, A., & Hashimoto, Y. (2002). Lymph node macrophages, but not spleen macrophages, express high levels of unmasked sialoadhesin : implication for the adhesive properties of macrophages in vivo. Glycobiology, 12(3), 209–216. https://doi.org/10.1093/glycob/12.3.209
- Nguyen, K. A., Hamzeh-Cognasse, H., Palle, S., Anselme-Bertrand, I., Arthaud, C. A., Chavarin, P., Pozzetto, B., Garraud, O., & Cognasse, F. (2014). Role of siglec-7 in apoptosis in human platelets. PLoS ONE, 9(9), e106239. https://doi.org/10.1371/journal.pone.0106239
- Nicoll, G., Avril, T., Lock, K., Furukawa, K., Bovin, N., & Crocker, P. R. (2003). Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. European Journal of Immunology, 33(6), 1642–1648. https://doi.org/10.1002/eji.200323693
- Nitschke, L. (2005). The role of CD22 and other inhibitory co-receptors in B-cell activation. Current Opinion in Immunology, 17(3), 290–297. https://doi.org/10.1016/j.coi.2005.03.005
- Nutku-bilir, E., Hudson, S. A., & Bochner, B. S. (2008). Interleukin-5 priming of human eosinophils alters Siglec-8 – mediated apoptosis pathways. American Journal of Respiratory Cell and Molecular Biology, 38(1), 121–124. https://doi.org/10.1165/rcmb.2007-0154OC
- Nutku, E., Aizawa, H., Hudson, S. A., & Bochner, B. S. (2003). Ligation of Siglec-8 : a selective mechanism for induction of human eosinophil apoptosis. Blood, 101(12), 5014–5020. https://doi.org/10.1182/blood-2002-10-3058
- Nycholat, C. M., Duan, S., Knuplez, E., Worth, C., Elich, M., Yao, A., O’Sullivan, J., McBride, R., Wei, Y., Fernandes, S. M., Zhu, Z., Schnaar, R. L., Bochner, B. S., & Paulson, J. C. (2019). A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and-F on Immune Cells [Rapid-communication]. Journal of the American Chemical Society, 141(36), 14032–14037. https://doi.org/10.1021/jacs.9b05769
- Nycholat, C. M., Rademacher, C., Kawasaki, N., & Paulson, J. C. (2012). In Silico-Aided Design of a Glycan Ligand of Sialoadhesin for in Vivo Targeting of Macrophages. Journal of the American Chemical Society, 134(38), 15696–15699. https://doi.org/10.1021/ja307501e
- O’Neill, A. S. G., Van Den Berg, T. K., & Mullen, G. E. D. (2013). Sialoadhesin - a macrophage-restricted marker of immunoregulation and inflammation. Immunology, 138(3), 198–207. https://doi.org/10.1111/imm.12042
- O’Reilly, M. K., Tian, H., & Paulson, J. C. (2011). CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. Journal of Immunology, 186(3), 1554–1563. https://doi.org/10.4049/jimmunol.1003005
- O’Sullivan, J. A., Carroll, D. J., Cao, Y., Salicru, A. N., & Bochner, B. S. (2018). Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. Journal of Allergy and Clinical Immunology, 141(5), 1774-1785.e7. https://doi.org/10.1016/j.jaci.2017.06.028
- Orr, S. J., Morgan, N. M., Elliott, J., Burrows, J. F., Scott, C. J., McVicar, D. W., & Johnston, J. A. (2007). CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood, 109(3), 1061–1068. https://doi.org/10.1182/blood-2006-05-023556
- Patel, N., Brinkman-Van Der Linden, E. C. M., Altmann, S. W., Gish, K., Balasubramanian, S., Timans, J. C., Peterson, D., Bell, M. P., Bazan, J. F., Varki, A., & Kastelein, R. A. (1999). OB-BP1/Siglec-6. A leptin- and sialic acid-binding protein of the immunoglobulin superfamily. Journal of Biological Chemistry, 274(32), 22729–22738. https://doi.org/10.1074/jbc.274.32.22729
- Paul, S. P., Taylor, L. S., Stansbury, E. K., & McVicar, D. W. (2000). Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood, 96(2), 483–490. https://doi.org/10.1182/blood.v96.2.483
- Peng, W., & Paulson, J. C. (2017). CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells. Journal of the American Chemical Society, 139(36), 12450–12458. https://doi.org/10.1021/jacs.7b03208
- Pérez-Oliva, A. B., Martínez-Esparza, M., Vicente-Fernández, J. J., Corral-San Miguel, R., García-Peñarrubia, P., & Hernández-Caselles, T. (2011). Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells. Glycobiology, 21(6), 757–770. https://doi.org/10.1093/glycob/cwq220
- Perez-Zsolt, D., Erkizia, I., Pino, M., García-Gallo, M., Martin, M., Benet, S., Chojnacki, J., Fernández-Figueras, M. T., Guerrero, D., Urrea, V., Muñiz-Trabudua, X., Kremer, L., Martinez-Picado, J., & Izquierdo-Useros, N. (2019). Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nature Microbiology, 4(9), 1558–1570. https://doi.org/10.1038/s41564-019-0453-2
- Perez-zsolt, D., Martinez-Picado, J., & Izquierdo-Useros, N. (2019). When Dendritic Cells Go Viral : The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses, 12(1), 8. https://doi.org/10.3390/v12010008
- Pillai, S., Netravali, I. A., Cariappa, A., & Mattoo, H. (2012). Siglecs and Immune Regulation. Annual Reviews, 30, 357–392. https://doi.org/10.1146/annurev-immunol-020711-075018
- Poe, J. C., Fujimoto, Y., Hasegawa, M., Haas, K. M., Miller, A. S., Sanford, I. G., Bock, C. B., Fujimoto, M., & Tedder, T. F. (2004). CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nature Immunology, 5(10), 1078–1087. https://doi.org/10.1038/ni1121
- Prescher, H., Frank, M., Gütgemann, S., Kuhfeldt, E., Schweizer, A., Nitschke, L., Watzl, C., & Brossmer, R. (2017). Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands : Toward Novel Inhibitors of Cancer Immune Evasion. Journal of Medicinal Chemistry, 60(3), 941–956. https://doi.org/10.1021/acs.jmedchem.6b01111
- Prescher, H., Schweizer, A., Kuhfeldt, E., Nitschke, L., & Brossmer, R. (2014). Discovery of Multifold Modified Sialosides as Human CD22/Siglec 2 Ligands with Nanomolar Activity on B Cells. ACS Chemical Biology, 9(7), 1444–1450. https://doi.org/10.1021/cb400952v
- Pronker, M. F., Lemstra, S., Snijder, J., Heck, A. J. R., Thies-Weesie, D. M. E., Pasterkamp, R. J., & Janssen, B. J. C. (2016). Structural basis of myelin-associated glycoprotein adhesion and signalling. Nature Communications, 7, 13584. https://doi.org/10.1038/ncomms13584
- Pröpster, J. M., Yang, F., Rabbani, S., Ernst, B., Allain, F. H., & Schubert, M. (2016). Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc. Natl. Acad. Sci., 113(29), E4170–E4179. https://doi.org/10.1073/pnas.1602214113
- Quarles, R. H. (2007). Myelin-associated glycoprotein (MAG) : past, present and beyond. Journal of Neurochemistry, 100(6), 1431–1438. https://doi.org/10.1111/j.1471-4159.2006.04319.x.
- Rillahan, C.D., Schwartz, E., McBride, R., Fokin, V. V, & Paulson, J. C. (2012). Click and pick : identification of sialoside analogues for siglec-based cell targeting. Angewandte Chemie - International Ed. in English, 51(44), 11014–11018. https://doi.org/10.1002/anie.201205831
- Rillahan, C.D., Schwartz, E., Rademacher, C., McBride, R., Rangarajan, J., Fokin, V. V., & Paulson, J. C. (2013). On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chemical Biology, 8(7), 1417–1422. https://doi.org/10.1021/cb400125w
- Rillahan, C.D., Macauley, M. S., Schwartz, E., He, Y., Arlian, B. M., Rangarajan, J., Fokin, V. V, & Paulson, J. C. (2014). Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chemical Science, 5(6), 2398–2406. https://doi.org/10.1039/C4SC00451E.
- Robertson, M. J., Soiffer, R. J., Freedman, A. S., Rabinowe, S. L., Anderson, K. C., Ervin, T. J., Murray, C., Dear, K., Griffin, J. D., Nadler, L. M., & Ritz, J. (1992). Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis : Clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia. Blood, 79(9), 2229–2236. https://doi.org/10.1182/blood.v79.9.2229.2229
- Rumer, K. K., Uyenishi, J., Hoffman, M. C., Fisher, B. M., & Winn, V. D. (2013). Siglec-6 expression is increased in placentas from pregnancies complicated by preterm preeclampsia. Reproductive Sciences, 20(6), 646–653. https://doi.org/10.1177/1933719112461185
- Schanin, J., Gebremeskel, S., Korver, W., Falahati, R., Butuci, M., Haw, T. J., Nair, P. M., Liu, G., Hansbro, N. G., Hansbro, P. M., Evensen, E., Brock, E. C., Xu, A., Wong, A., Leung, J., Bebbington, C., Tomasevic, N., & Youngblood, B. A. (2021). A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunology, 14(2), 366–376. https://doi.org/10.1038/s41385-020-00336-9
- Schauer, R., & Kamerling, J. P. (2018). Exploration of the Sialic Acid World. Advances in Carbohydrate Chemistry and Biochemistry, 75, 1–213. https://doi.org/10.1016/bs.accb.2018.09.001
- Schwardt, O., Kelm, S., & Ernst, B. (2015). SIGLEC-4 (MAG) Antagonists : From the Natural Carbohydrate Epitope to Glycomimetics. Topics in Current Chemistry, 367, 151–200. https://doi.org/10.1007/128_2013_498
- Schweizer, A., Wöhner, M., Prescher, H., Brossmer, R., & Nitschke, L. (2012). Targeting of CD22-positive B-cell lymphoma cells by synthetic divalent sialic acid analogues. European Journal of Immunology, 42(10), 2792–2802.
- Sewald, X., Ladinsky, M. S., Uchil, P. D., Beloor, J., Pi, R., Herrmann, C., Motamedi, N., Murooka, T. T., Brehm, M. A., Greiner, D. L., Shultz, L. D., Mempel, T. R., Bjorkman, P. J., Kumar, P., & Mothes, W. (2015). Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science, 350(6260), 563–567. https://doi.org/10.1126/science.aab2749
- Shahraz, A., Kopatz, J., Mathy, R., Kappler, J., Winter, D., Kapoor, S., Schütza, V., Scheper, T., Gieselmann, V., & Neumann, H. (2015). Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Scientific Reports, 5, 16800. https://doi.org/10.1038/srep16800
- Shao, J. Y., Yin, W. W., Zhang, Q. F., Liu, Q., Peng, M. L., Hu, H. D., Hu, P., Ren, H., & Zhang, D. Z. (2016). Siglec-7 Defines a Highly Functional Natural Killer Cell Subset and Inhibits Cell-Mediated Activities. Scandinavian Journal of Immunology, 84(3), 182–190. https://doi.org/10.1111/sji.12455
- Sheikh, A. A. ., Akatsu, C., Imamura, A., Abdu-Allah, H. H. M., Takematsu, H., Ando, H., Ishida, H., Kiso, M., & Tsubata, T. (2018). Proximity labeling of cis-ligands of CD22/Siglec-2 reveals stepwise alpha2,6 sialic acid-dependent and -independent interactions, Biochem. Biophys. Res. Commun. Biochemical and Biophysical Research Communications, 495(1), 854–859. https://doi.org/10.1016/j.bbrc.2017.11.086
- Shelke, S. V., Cutting, B., Jiang, X., Koliwer-Brandl, H., Strasser, D. S., Schwardt, O., Kelm, S., & Ernst, B. (2010). A fragment-based in situ combinatorial approach to identify high-affinity ligands for unknown binding sites. Angewandte Chemie - International Edition, 49(33), 5721–5725. https://doi.org/10.1002/anie.200907254
- Shelke, S. V, Gao, G., Mesch, S., Gathje, H., Kelm, S., Schwardt, O., & Ernst, B. (2007). Synthesis of sialic acid derivatives as ligands for the myelin-associated glycoprotein (MAG). Bioorganic & Medicinal Chemistry, 15(14), 4951–4965. https://doi.org/10.1016/j.bmc.2007.04.038
- Siddiqui, S. S., Matar, R., Merheb, M., Hodeify, R., Vazhappilly, C. G., Marton, J., Shamsuddin, S. A., & Al Zouabi, H. (2019). Siglecs in Brain Function and Neurological Disorders. Cells, 8(10), 1125. https://doi.org/10.3390/cells8101125
- Siebenhaar, F., Bonnekoh, H., Hawro, T., Hawro, M., Michaelis, E., Rasmussen, H., Singh, B., Kantor, A., Chang, A., & Maurer, M. (2019). Safety and efficacy data of AK002, an anti-Siglec-8 monoclonal antibody, in patients with indolent systemic mastocytosis (ISM) : Results from a first-in-human, open-label phase 1 study. Allergy, 74, 854–915.
- Stanczak, M. A., Siddiqui, S. S., Trefny, M. P., Thommen, D. S., Boligan, K. F., Von Gunten, S., Tzankov, A., Tietze, L., Lardinois, D., Heinzelmann-Schwarz, V., Von Bergwelt-Baildon, M., Zhang, W., Lenz, H. J., Han, Y., Amos, C. I., Syedbasha, M., Egli, A., Stenner, F., Speiser, D. E., Läubli, H. (2018). Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. Journal of Clinical Investigation, 128(11), 4912–4923. https://doi.org/10.1172/JCI120612
- Sullivan-Chang, L., O’Donnell, R. T., & Tuscano, J. M. (2013a). Targeting CD22 in B-cell malignancies : Current status and clinical outlook. BioDrugs, 27(4), 293–304. https://doi.org/10.1007/s40259-013-0016-7
- Sullivan-Chang, L., O’Donnell, R. T., & Tuscano, J. M. (2013b). Targeting CD22 in B-cell malignancies : Current status and clinical outlook. BioDrugs, 27, 293–304. https://doi.org/10.1007/s40259-013-0016-7
- Takamiya, R., Ohtsubo, K., Takamatsu, S., Taniguchi, N., & Angata, T. (2013). The interaction between Siglec- 15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology, 23(2), 178–187. https://doi.org/10.1093/glycob/cws139
- Tedder, T. F., Poe, J. C., & Haas, K. M. (2005). CD22 : A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in Immunology, 88, 1–50. https://doi.org/10.1016/S0065-2776(05)88001-0
- Tsubata, T. (2012). Role of inhibitory BCR co-receptors in immunity. 2012 ;12(3):181–190. Infectious Disorders Drug Targets, 12(3), 181–190. https://doi.org/10.2174/187152612800564455
- Tsuda, E., Fukuda, C., Okada, A., Karibe, T., Hiruma, Y., Takagi, N., Isumi, Y., Yamamoto, T., Hasegawa, T., Uehara, S., Koide, M., Udagawa, N., Amizuka, N., & Kumakura, S. (2022). Characterization, pharmacokinetics, and pharmacodynamics of anti-Siglec-15 antibody and its potency for treating osteoporosis and as follow-up treatment after parathyroid hormone use. Bone, 155, 116241. https://doi.org/10.1016/j.bone.2021.116241
- Van Der Merwe, P. A., Crocker, P. R., Vinson, M., Barclay, A. N., Schauer, R., & Kelm, S. (1996). Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. Journal of Biological Chemistry, 271(16), 9273–9280. https://doi.org/10.1074/jbc.271.16.9273
- Varki, A. (2001). Loss of N-glycolylneuraminic acid in humans : mechanisms, consequences, and implications for hominid evolution. American Journal of Physical Anthropology, Suppl 3, 54–69. https://doi.org/10.1002/ajpa.10018.abs
- Varki, A,. Cummings, R. D., Aebi, M., Parker, N. H., Seeberger, P. H., Esko, J. D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J. J., Schnaar, R. L., Freeze, H. H., Marta, J. D., Bertozzi, C. R., Etzler, M. E., Frank, M., Vligenthart, J. F. G., Lutteke, T., Korfeld, S. (2016). Symbol Nomenclature for Graphical Representation of Glycans. Glycobiology, 25(12), 1323–1324. https://doi.org/10.1093/glycob/cwv091
- Varki, A., Schnaar, R. L., & Crocker, P. R. (2015). I-Type Lectins. In Essentials of Glycobiology (pp. 453–467).
- Varki, A. (2008). Sialic acids in human health and disease. Trends in Molecular Medicine, 14(8), 351–360. https://doi.org/10.1016/j.molmed.2008.06.002
- Varki, A. & Angata, T. (2006). Siglecs — the major subfamily of I-type lectins. Glycobiology, 16(1), 1R-27R. https://doi.org/10.1093/glycob/cwj008
- von Gunten, S., & Bochner, B. S. (2008). Basic and Clinical Immunology of Siglecs. Annals of the New York Academy of Sciences, 1143, 61–82. https://doi.org/10.1196/annals.1443.011
- von Gunten, S., Vogel, M., Schaub, A., Stadler, B. M., Miescher, S., Crocker, P. R., & Simon, H. (2007). Intravenous immunoglobulin preparations contain anti – Siglec-8 autoantibodies. Journal of Allergy and Clinical Immunology, 119(4), 1005–1011. https://doi.org/10.1016/j.jaci.2007.01.023
- Von Gunten, S., Yousefi, S., Seitz, M., Jakob, S. M., Schaffner, T., Seger, R., Takala, J., Villiger, P. M., & Simon, H.-U. (2005). Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood, 106(4), 1423–1431. https://doi.org/10.1182/blood-2004-10-4112
- Walter, R. B., Raden, B. W., Zeng, R., Häusermann, P., Bernstein, I. D., & Cooper, J. A. (2008). ITIM-dependent endocytosis of CD33-related Siglecs : role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. Journal of Leukocyte Biology, 83(1), 200–211. https://doi.org/10.1189/jlb.0607388
- Wang, B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition, 3(3), 465S-72S. https://doi.org/10.3945/an.112.001875.
- Wang, J., Sun, J., Liu, L. N., Flies, D. B., Nie, X., Toki, M., Zhang, J., Song, C., Zarr, M., Zhou, X., Han, X., Archer, K. A., O’Neill, T., Herbst, R. S., Boto, A. N., Sanmamed, M. F., Langermann, S., Rimm, D. L., & Chen, L. (2019). Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nature Medicine, 25(4), 656–666. https://doi.org/10.1038/s41591-019-0374-x
- Wang, X., Mitra, N., Cruz, P., Deng, L., Varki, N., Angata, T., Green, E. D., Mullikin, J., Hayakawa, T., & Varki, A. (2012). Evolution of siglec-11 and siglec-16 genes in hominins. Molecular Biology and Evolution, 29(8), 2073–2086. https://doi.org/10.1093/molbev/mss077
- Wang, Y., & Neumann, H. (2010). Alleviation of neurotoxicity by microglial human Siglec-11. Journal of Neuroscience, 30(9), 3482–3488. https://doi.org/10.1523/JNEUROSCI.3940-09.2010
- Winterstein, C., Trotter, J., & Krämer-Albers, E. M. (2008). Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. Journal of Cell Science, 121(Pt 6), 834–842. https://doi.org/10.1242/jcs.022731
- Xiong, Y. S., Cheng, Y., Lin, Q. S., Wu, A. L., Yu, J., Li, C., Sun, Y., Zhong, R. Q., & Wu, L. J. (2014). Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford)., 53(2), 250–259. https://doi.org/10.1093/rheumatology/ket342
- Yamakawa, N., Yasuda, Y., Yoshimura, A., Goshima, A., Crocker, P. R., Vergoten, G., Nishiura, Y., Takahashi, T., Hanashima, S., Matsumoto, K., Yamaguchi, Y., Tanaka, H., Kitajima, K., & Sato, C. (2020). Discovery of a new sialic acid binding region that regulates Siglec-7. Scientific Reports, 10(1), 8647. https://doi.org/10.1038/s41598-020-64887-4
- Yamauchi, J., Miyamoto, Y., Torii, T., Takashima, S., Kondo, K., Kawahara, K., Nemoto, N., Chan, J. R., Tsujimoto, G., & Tanoue, A. (2012). Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development. Science Signaling, 5(243), ra69. https://doi.org/10.1126/scisignal.2002802
- Yokoi, H., Choi, O. H., Hubbard, W., Lee, H., Canning, B. J., Lee, H. H., Ryu, S., Gunten, S. Von, Bickel, C. A., Hudson, S. A., Macglashan, D. W., & Bochner, B. S. (2008). Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid – binding immunoglobulin-like lectin 8 engagement. Journal of Allergy and Clinical Immunology, 121(2), 499–506. https://doi.org/10.1016/j.jaci.2007.10.004
- York, M. R., Nagai, T., Mangini, A. J., Lemaire, R., van Seventer, J. M., & Lafyatis, R. (2007). A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis and Rheumatism, 56(3), 1010–1020. https://doi.org/10.1002/art.22382
- Yu, H. F., Gonzalez-Gil, A., Wei, Y. D., Fernandes, S. M., Porell, R. N., Vajn, K., Paulson, J. C., Nycholat, C. M., & Schnaar, R. L. (2017). Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology, 27(7), 657–668. https://doi.org/10.1093/glycob/cwx026
- Zaccai, N. R., Maenaka, K., Maenaka, T., Crocker, P. R., Brossmer, R., Kelm, S., & Jones, E. Y. (2003). Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure, 11(5), 557–567. https://doi.org/10.1016/S0969-2126(03)00073-X
- Zhang, J. Q., Nicoll, G., Jones, C., & Crocker, P. R. (2000). Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. The Journal of Biological Chemistry, 275(29), 22121–22126. https://doi.org/10.1074/jbc.M002788200
- Zhen, G., Dan, Y., Wang, R., Dou, C., Guo, Q., Zarr, M., Liu, L. N., Chen, L., Deng, R., Li, Y., Shao, Z., & Cao, X. (2021). An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP+ mononuclear cells and PDGF-BB secretion. Bone Research, 9(1), 47. https://doi.org/10.1038/s41413-021-00161-1
- Zhuravleva, M. A., Trandem, K., & Sun, P. D. (2008). Structural Implications of Siglec-5-Mediated Sialoglycan Recognition. Journal of Molecular Biology, 375(2), 437–447. https://doi.org/10.1016/j.jmb.2007.10.009