References

  • Allan, E. J. (1991). Induction and cultivation of a stable L-form ofBacillus subtilisThe Journal of Applied Bacteriology70(4), 339–343.
  • Allan, E. J., Hoischen, C., & Gumpert, J. (2009). Bacterial L-forms. Advances in applied microbiology (1st ed., Vol. 68). Elsevier Inc. http://doi.org/10.1016/S0065-2164(09)01201-5
  • Amano, K., Hayashi, H., Araki, Y., & Ito, E. (1977). The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. European Journal of Biochemistry / FEBS, 76(1), 299–307.
  • Angala, S. K., Belardinelli, J. M., Huc-Claustre, E., Wheat, W. H., & Jackson, M. (2014). The cell envelope glycoconjugates of Mycobacterium tuberculosisCritical Reviews in Biochemistry and Molecular Biology, 9238, 1–39. http://doi.org/10.3109/10409238.2014.925420
  • Atrih, A., Bacher, G., Allmaier, G., Williamson, M. P., & Foster, S. J. (1999). Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. Journal of Bacteriology181(13), 3956–3966.
  • Atrih, A., Zöllner, P., Allmaier, G., & Foster, S. J. (1996). Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. Journal of Bacteriology, 178(21), 6173–83. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=178487&tool=pmcentrez&rendertype=abstract
  • Bera, A., Biswas, R., Herbert, S., & Götz, F. (2006). The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infection and Immunity74(8), 4598–4604. http://doi.org/10.1128/IAI.00301-06
  • Bernard, E., Rolain, T., Courtin, P., Guillot, A., Langella, P., Hols, P., & Chapot-Chartier, M. P. (2011). Characterization of O-acetylation of N-acetylglucosamine : A novel structural variation of bacterial peptidoglycan. Journal of Biological Chemistry286(27), 23950–23958. http://doi.org/10.1074/jbc.M111.241414
  • Boneca, I. G., Huang, Z. H., Gage, D. a., & Tomasz, A. (2000). Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new β-N-acetylglucosaminidase activity. Journal of Biological Chemistry275(14), 9910–9918. http://doi.org/10.1074/jbc.275.14.9910
  • Bougault, C., Hediger, S., & Simorre, J. (2012). Solid-state NMR of the Bacterial Cell Wall. In H. S. Press (Ed.), Bacterial Glycomics : Current research, technology and applications.
  • Bradshaw, W. J., Davies, A. H., Chambers, C. J., Roberts, A. K., Shone, C. C., & Acharya, K. R. (2015). Molecular features of the sortase enzyme family. FEBS Journal, 282(11), 2097–2114. http://doi.org/10.1111/febs.13288
  • Braun, V., & Rehn, K. (1969). Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. European Journal of Biochemistry / FEBS, 10(3), 426–438. http://doi.org/10.1111/j.1432-1033.1969.tb00707.x
  • Bui, N. K., Eberhardt, A., Vollmer, D., Kern, T., Bougault, C., Tomasz, A., … Vollmer, W. (2012). Isolation and analysis of cell wall components from Streptococcus pneumoniae. Analytical Biochemistry421(2), 657–666. http://doi.org/10.1016/j.ab.2011.11.026
  • Burmant, L. G., & Park, J. T. (1983). Changes in the Composition of Escherichia coli Murein as It Ages During Exponential Growth. Journal of Bacteriology155(2), 447–453.
  • Cava, F., de Pedro, M. A., Lam, H., Davis, B. M., & Waldor, M. K. (2011). Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. The EMBO Journal, 30(16), 3442–3453. http://doi.org/10.1038/emboj.2011.246
  • Choudhury, B., Leoff, C., Saile, E., Wilkins, P., Quinn, C. P., Kannenberg, E. L., & Carlson, R. W. (2006). The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific. Journal of Biological Chemistry, 281(38), 27932–27941. http://doi.org/10.1074/jbc.M605768200
  • Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria : structural and mechanistic insights. Nature Reviews Microbiology13(6), 343–359. http://doi.org/10.1038/nrmicro3456
  • Daffé, M. (2015). The cell envelope of tubercle bacilli. Tuberculosis,95, 155–158. http://doi.org/10.1016/j.tube.2015.02.024
  • de Pedro, M. A., & Cava, F. (2015). Structural constraints and dynamics of bacterial cell wall architecture. Frontiers in Microbiology, 6(May), 1–10. http://doi.org/10.3389/fmicb.2015.00449
  • de Pedro, M. A., & Schwarz, U. (1981). Heterogeneity of newly inserted and preexisting murein in the sacculus of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America78(9), 5856–5860. http://doi.org/10.1073/pnas.78.9.5856
  • Demchick, P., & Koch, A. L. (1996). The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 178(3), 768–773.
  • Desmarais, S. M., de Pedro, M. A., Cava, F., & Huang, K. C. (2013). Peptidoglycan at its peaks : How chromatographic analyses can reveal bacterial cell wall structure and assembly. Molecular Microbiology, 89(1), 1–13. http://doi.org/10.1111/mmi.12266
  • Dmitriev, B. A., Toukach, F. V, Holst, O., Rietschel, E. T., & Ehlers, S. (2004). Tertiary Structure of Staphylococcus aureus Cell Wall Murein. Journal of Bacteriology186(21), 7141–7148. http://doi.org/10.1128/JB.186.21.7141
  • Dover, R. S., Bitler, A., Shimoni, E., Trieu-Cuot, P., & Shai, Y. (2015). Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nature Communications, 6(May), 7193. http://doi.org/10.1038/ncomms8193
  • Eberhardt, A., Hoyland, C. N., Vollmer, D., Bisle, S., Cleverley, R. M., Johnsborg, O., … Vollmer, W. (2012). Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microbial Drug Resistance, 18(3), 240–55. http://doi.org/10.1089/mdr.2011.0232
  • Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open Biology, 3(1), 120143. http://doi.org/10.1098/rsob.120143
  • Fischbach, M. a, & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science, 325(5944), 1089–93. http://doi.org/10.1126/science.1176667
  • Fritz, G., & Mascher, T. (2014). A balancing act times two : sensing and regulating cell envelope homeostasis in Bacillus subtilis. Molecular Microbiology, 94(6), 1201–1207. http://doi.org/10.1111/mmi.12848
  • Gan, L., Chen, S., & Jensen, G. J. (2008). Molecular organization of Gram-negative peptidoglycan. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18953–18957. http://doi.org/10.1073/pnas.0808035105
  • Glauner, B., Holtje, J. V., & Schwarz, U. (1988). The composition of the murein of Escherichia coli. Journal of Biological Chemistry,263(21), 10088–10095.
  • Gumbart, J. C., Beeby, M., Jensen, G. J., & Roux, B. (2014). Escherichia coli Peptidoglycan Structure and Mechanics as Predicted by Atomic-Scale Simulations. PLoS Computational Biology10(2). http://doi.org/10.1371/journal.pcbi.1003475
  • Harz, H., Burgdorf, K., & Höltje, J. V. (1990). Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Analytical Biochemistry190(1), 120–128. http://doi.org/10.1016/0003-2697(90)90144-X
  • Hayhurst, E. J., Kailas, L., Hobbs, J. K., & Foster, S. J. (2008). Cell wall peptidoglycan architecture in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14603–14608. http://doi.org/10.1073/pnas.0804138105
  • Jeske, O., Schüler, M., Schumann, P., Schneider, A., Boedeker, C., Jogler, M., … Jogler, C. (2015). Planctomycetes do possess a peptidoglycan cell wall. Nature Communications, 6(May), 7116. http://doi.org/10.1038/ncomms8116
  • Klein, R. a., Hartmann, R., Egge, H., Behr, T., & Fischer, W. (1996). The aqueous solution structure of a lipoteichoic acid from Streptococcus pneumoniae strain R6 containing 2,4-diamino-2,4,6-trideoxy-galactose : evidence for conformational mobility of the galactopyranose ring. Carbohydrate Research, 281(1), 79–98. http://doi.org/16/0008-6215(95)00336-3
  • Koch, A. L., Lane, S. L., Miller, J. A., & Nickens, D. G. (1987). Contraction Of Filaments Of Escherichia-Coli After Disruption Of Cell-Membrane By Detergent. Journal of Bacteriology169(5), 1979–1984.
  • Koch, A. L., & Woeste, S. (1992). Elasticity Of The Sacculus Of Escherichia-coli. Journal of Bacteriology, 174(14), 4811–4819.
  • Kuru, E., Hughes, H. V., Brown, P. J., Hall, E., Tekkam, S., Cava, F., … Vannieuwenhze, M. S. (2012). In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angewandte Chemie – International Edition, 51(50), 12519–12523. http://doi.org/10.1002/anie.201206749
  • Kuru, E., Tekkam, S., Hall, E., Brun, Y. V., & Van Nieuwenhze, M. S. (2015). Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nature Protocols, 10(1), 33–52. http://doi.org/10.1038/nprot.2014.197
  • Labischinski, H., Goodell, E. W., Goodell, a., & Hochberg, M. L. (1991). Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7 : A neutron small-angle scattering study. Journal of Bacteriology173(2), 751–756. http://doi.org/0021-9193/91
  • Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., … Mainardi, J. L. (2008). The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. Journal of Bacteriology,190(12), 4360–4366. http://doi.org/10.1128/JB.00239-08
  • Leaver, M., Domínguez-Cuevas, P., Coxhead, J. M., Daniel, R. a, & Errington, J. (2009). Life without a wall or division machine in Bacillus subtilis. Nature457(7231), 849–853. http://doi.org/10.1038/nature08232
  • Liechti, G. W., Kuru, E., Hall, E., Kalinda, A., Brun, Y. V., VanNieuwenhze, M., & Maurelli, a T. (2014). A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature506(7489), 507–10. http://doi.org/10.1038/nature12892
  • Loskill, P., Pereira, P. M., Jung, P., Bischoff, M., Herrmann, M., Pinho, M. G., & Jacobs, K. (2014). Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophysical Journal, 107(5), 1082–1089. http://doi.org/10.1016/j.bpj.2014.07.029
  • Lower, B. H., & Bazylinski, D. a. (2013). The bacterial magnetosome : A unique prokaryotic organelle. Journal of Molecular Microbiology and Biotechnology, 23(1-2), 63–80. http://doi.org/10.1159/000346543
  • Magnet, S., Bellais, S., Dubost, L., Fourgeaud, M., Mainardi, J. L., Petit-Frère, S., … Gutmann, L. (2007). Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. Journal of Bacteriology,189(10), 3927–3931. http://doi.org/10.1128/JB.00084-07
  • Mainardi, J. L., Fourgeaud, M., Hugonnet, J. E., Dubost, L., Brouard, J. P., Ouazzani, J., … Arthur, M. (2005). A novel peptidoglycan cross-linking enzyme for a β-lactam-resistant transpeptidation pathway. Journal of Biological Chemistry280(46), 38146–38152. http://doi.org/10.1074/jbc.M507384200
  • Mainardi, J. L., Legrand, R., Arthur, M., Schoot, B., Van Heijenoort, J., & Gutmann, L. (2000). Novel mechanism of β-lactam resistance due to bypass of DD- transpeptidation in Enterococcus faecium. Journal of Biological Chemistry275(22), 16490–16496. http://doi.org/10.1074/jbc.M909877199
  • Mainardi, J. L., Morel, V., Fourgeaud, M., Cremniter, J., Blanot, D., Legrand, R., … Gutmann, L. (2002). Balance between two transpeptidation mechanisms determines the expression of β-lactam resistance in Enterococcus faecium. Journal of Biological Chemistry,277(39), 35801–35807. http://doi.org/10.1074/jbc.M204319200
  • Mason, O. U., Nakagawa, T., Rosner, M., van Nostrand, J. D., Zhou, J., Maruyama, A., … Giovannoni, S. J. (2010). First investigation of the microbiology of the deepest layer of ocean crust. PLoS ONE, 5(11). http://doi.org/10.1371/journal.pone.0015399
  • Matias, V. R. F., Al-amoudi, A., Dubochet, J., & Beveridge, T. J. (2003). Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology185(20), 6112–6118. http://doi.org/10.1128/JB.185.20.6112
  • Matias, V. R. F., & Beveridge, T. J. (2005). Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis168 and the existence of a periplasmic space. Molecular Microbiology, 56(1), 240–251. http://doi.org/10.1111/j.1365-2958.2005.04535.x
  • Matias, V. R. F., & Beveridge, T. J. (2006). Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. Journal of Bacteriology188(3), 1011–1021. http://doi.org/10.1128/JB.188.3.1011-1021.2006
  • Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L., & Mobashery, S. (2006). Three-dimensional structure of the bacterial cell wall peptidoglycan. Proceedings of the National Academy of Sciences of the United States of America103(12), 4404–4409. http://doi.org/10.1073/pnas.0510182103
  • Modi, S. R., Collins, J. J., & Relman, D. A. (2014). Antibiotics and the gut microbiota. The Journal of Clinical Investigation124(10), 4212–8. http://doi.org/10.1172/JCI72333.The
  • Morimoto, Y., & Minamino, T. (2014). Structure and Function of the Bi-Directional Bacterial Flagellar Motor. Biomolecules4(1), 217–234. http://doi.org/10.3390/biom4010217
  • Moynihan, P. J., Sychantha, D., & Clarke, A. J. (2014). Chemical biology of peptidoglycan acetylation and deacetylation. Bioorganic Chemistry54, 44–50. http://doi.org/10.1016/j.bioorg.2014.03.010Minireview
  • Orf, G. S., & Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research116(2-3), 315–331. http://doi.org/10.1007/s11120-013-9869-3
  • Park, H. J., Kang, K. M., Dybvig, K., Lee, B. L., Jung, Y. W., & Lee, I. H. (2013). Interaction of cationic antimicrobial peptides with Mycoplasma pulmonis. FEBS Letters, 587(20), 3321–3326. http://doi.org/10.1016/j.febslet.2013.08.016
  • Pedersen, C. M., Figueroa-Perez, I., Boruwa, J., Lindner, B., Ulmer, A. J., Zähringer, U., & Schmidt, R. R. (2010). Synthesis of the core structure of the lipoteichoic acid of Streptococcus pneumoniae. Chemistry – A European Journal, 16(42), 12627–12641. http://doi.org/10.1002/chem.201001204
  • Pilhofer, M., Aistleitner, K., Biboy, J., Gray, J., Kuru, E., Hall, E., … Jensen, G. J. (2013). Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nature Communications4, 2856. http://doi.org/10.1038/ncomms3856
  • Pisabarro, A. G., de Pedro, M. A., & Vazquez, D. (1985). Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. Journal of Bacteriology161(1), 238–242.
  • Putker, F., Bos, M. P., & Tommassen, J. (2015). Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiology Reviews, (February), 1–18. http://doi.org/10.1093/femsre/fuv026
  • Rae, B. D., Long, B. M., Whitehead, L. F., Förster, B., Badger, M. R., & Price, G. D. (2013). Cyanobacterial carboxysomes : Microcompartments that facilitate CO 2 fixation. Journal of Molecular Microbiology and Biotechnology23(4-5), 300–307. http://doi.org/10.1159/000351342
  • Schlag, M., Biswas, R., Krismer, B., Kohler, T., Zoll, S., Yu, W., … Götz, F. (2010). Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Molecular Microbiology75(4), 864–873. http://doi.org/10.1111/j.1365-2958.2009.07007.x
  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology2(5), a000414. http://doi.org/10.1101/cshperspect.a000414
  • Turner, R. D., Hurd, A. F., Cadby, A., Hobbs, J. K., & Foster, S. J. (2013). Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nature Communications,4, 1496. http://doi.org/10.1038/ncomms2503
  • Turner, R. D., Ratcliffe, E. C., Wheeler, R., Golestanian, R., Hobbs, J. K., & Foster, S. J. (2010). Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nature Communications, 1(3), 26. http://doi.org/10.1038/ncomms1025
  • Turner, R. D., Vollmer, W., & Foster, S. J. (2014). Different walls for rods and balls : The diversity of peptidoglycan. Molecular Microbiology915, 862–874. http://doi.org/10.1111/mmi.12513
  • van Teeseling, M. C. F., Mesman, R. J., Kuru, E., Espaillat, A., Cava, F., Brun, Y. V., … van Niftrik, L. (2015). Anammox Planctomycetes have a peptidoglycan cell wall. Nature Communications, 6(May), 6878. http://doi.org/10.1038/ncomms7878
  • Vázquez-laslop, N., Lee, H., Hu, R., & Alex, A. (2001). Molecular Sieve Mechanism of Selective Release of Cytoplasmic Proteins by Osmotically Shocked Escherichia coli Molecular Sieve Mechanism of Selective Release of Cytoplasmic Proteins by Osmotically Shocked Escherichia coli. Journal of Bacteriology183(8), 2399–2404. http://doi.org/10.1128/JB.183.8.2399
  • Vocadlo, D. J., Davies, G. J., Laine, R., & Withers, S. G. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature, 412(6849), 835–838. http://doi.org/10.1038/35090602
  • Vollmer, W. (2008). Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiology Reviews32(2), 287–306. http://doi.org/10.1111/j.1574-6976.2007.00088.x
  • Vollmer, W., Blanot, D., & de Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS Microbiology Reviews32(2), 149–67. http://doi.org/10.1111/j.1574-6976.2007.00094.x
  • Vollmer, W., & Höltje, J. V. (2004). The Architecture of the Murein ( Peptidoglycan ) in Gram-Negative Bacteria  : Vertical Scaffold or Horizontal Layer ( s ) ? Journal of Bacteriology186(18), 5978–5987. http://doi.org/10.1128/JB.186.18.5978
  • Vollmer, W., Joris, B., Charlier, P., & Foster, S. J. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews32(2), 259–86. http://doi.org/10.1111/j.1574-6976.2007.00099.x
  • Vollmer, W., & Seligman, S. J. (2010). Architecture of peptidoglycan : more data and more models. Trends in Microbiology18(2), 59–66. http://doi.org/10.1016/j.tim.2009.12.004
  • Vollmer, W., Von Rechenberg, M., & Höltje, J. V. (1999). Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coliJournal of Biological Chemistry, 274(10), 6726–6734. http://doi.org/10.1074/jbc.274.10.6726
  • von Rechenberg, M., Ursinus, A., & Höltje, J. V. (1996). Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microbial Drug Resistance, 2(1), 155–157. http://doi.org/10.1089/mdr.1996.2.155
  • Vötsch, W., & Templin, M. F. (2000). Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. Journal of Biological Chemistry275(50), 39032–39038. http://doi.org/10.1074/jbc.M004797200
  • Wang, G., Olczak, A., Forsberg, L. S., & Maier, R. J. (2009). Oxidative stress-induced Peptidoglycan deacetylase in Helicobacter pylori. Journal of Biological Chemistry, 284(11), 6790–6800. http://doi.org/10.1074/jbc.M808071200
  • Wang, L., & Lutkenhaus, J. (1998). FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Molecular Microbiology, 29(3), 731–740. http://doi.org/10.1046/j.1365-2958.1998.00958.x
  • Wasserman, S. a., Walsh, C. T., & Botstein, D. (1983). Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. Journal of Bacteriology153(3), 1439–1450.
  • Watanabe, A., Yoshimura, T., Mikami, B., Hayashi, H., Kagamiyama, H., & Esaki, N. (2002). Reaction mechanism of alanine racemase from Bacillus stearothermophilus : X-ray crystallographic studies of the enzyme bound with N-(5′-phosphopyridoxyl)alanine. Journal of Biological Chemistry277(21), 19166–19172. http://doi.org/10.1074/jbc.M201615200
  • Weadge, J. T., & Clarke, A. J. (2006). Identification and characterization of O-acetylpeptidoglycan esterase : A novel enzyme discovered in Neisseria gonorrhoeaeBiochemistry45(3), 839–851. http://doi.org/10.1021/bi051679s
  • Weadge, J. T., Pfeffer, J. M., & Clarke, A. J. (2005). Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. BMC Microbiology5, 49. http://doi.org/10.1186/1471-2180-5-49
  • Weidenmaier, C., & Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology6(4), 276–287. http://doi.org/10.1038/nrmicro1861
  • Weiss, D. S. (2015). Last but not least : new insights into how FtsN triggers constriction during Escherichia coli cell division. Molecular Microbiology95(6), 903–909. http://doi.org/10.1111/mmi.12925
  • Weiss, D. S., Pogliano, K., Carson, M., Guzman, L. M., Fraipont, C., Nguyen-Distèche, M., … Beckwith, J. (1997). Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Molecular Microbiology25(4), 671–681.
  • Wheeler, R., Mesnage, S., Boneca, I. G., Hobbs, J. K., & Foster, S. J. (2011). Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Molecular Microbiology82(5), 1096–1109. http://doi.org/10.1111/j.1365-2958.2011.07871.x
  • White, C. L., Kitich, A., & Gober, J. W. (2010). Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Molecular Microbiology76(3), 616–633. http://doi.org/10.1111/j.1365-2958.2010.07108.x
  • White, R. J., & Pasternak, C. a. (1967). The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coliThe Biochemical Journal, 105(1), 121–125.
  • Wientjes, F. B., Woldringh, C. L., & Nanninga, N. (1991). Amount of Peptidoglycan in Cell Walls of Gram-Negative Bacteria. J Bacteriol,173(23), 7684–7691.
  • Wild, J., Hennig, J., Lobocka, M., Walczak, W., & Klopotowski, T. (1985). Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. MGG Molecular & General Genetics198(2), 315–322. http://doi.org/10.1007/BF00383013
  • Williams, A. H., Veyrier, F. J., Bonis, M., Michaud, Y., Raynal, B., Taha, M.-K., … Boneca, I. G. (2014). Visualization of a substrate-induced productive conformation of the catalytic triad of the Neisseria meningitidis peptidoglycan O-acetylesterase reveals mechanistic conservation in SGNH esterase family members. Acta Crystallographica Section D Biological Crystallography, 70(10), 2631–2639. http://doi.org/10.1107/S1399004714016770
  • Williams, K. B., Yahashiri, A., Arends, S. J. R., Popham, D. L., Fowler, C. A., & Weiss, D. S. (2013). Nuclear magnetic resonance solution structure of the peptidoglycan-binding SPOR domain from Escherichia coli DamX : Insights into septal localization. Biochemistry, 52(4), 627–639. http://doi.org/10.1021/bi301609e
  • Witty, M., Sanz, C., Shah, A., Grossmann, J. G., Mizuquchi, K., Perham, R. N., & Luisi, B. (2002). Structure of the periplasmic domain of Pseudomonas aeruginosa TolA : Evidence for an evolutionary relationship with the TonB transporter protein. EMBO Journal,21(16), 4207–4218. http://doi.org/10.1093/emboj/cdf417
  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms : proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America87(12), 4576–4579. http://doi.org/10.1073/pnas.87.12.4576
  • Xia, G., Kohler, T., & Peschel, A. (2010). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureusInternational Journal of Medical Microbiology, 300(2-3), 148–154. http://doi.org/10.1016/j.ijmm.2009.10.001
  • Yahashiri, A., Jorgenson, M. A., & Weiss, D. S. (2015). Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proceedings of the National Academy of Sciences. http://doi.org/10.1073/pnas.1508536112
  • Yang, D. C., Peters, N. T., Parzych, K. R., Uehara, T., Markovski, M., & Bernhardt, T. G. (2011). An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proceedings of the National Academy of Sciences of the United States of Americahttp://doi.org/10.1073/pnas.1107780108
  • Yang, D. C., Tan, K., Joachimiak, A., & Bernhardt, T. G. (2012). A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Molecular Microbiology, 85(4), 768–781. http://doi.org/10.1111/j.1365-2958.2012.08138.x
  • Yang, J. C., van den Ent, F., Neuhaus, D., Brevier, J., & Löwe, J. (2004). Solution structure and domain architecture of the divisome protein FtsN. Molecular Microbiology, 52(3), 651–660. http://doi.org/10.1111/j.1365-2958.2004.03991.x
  • Yao, X., Jericho, M., Pink, D., & Beveridge, T. (1999). Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. Journal of Bacteriology, 181(22), 6865–6875.
  • Yoon, J., Matsuo, Y., Matsuda, S., Kasai, H., & Yokota, A. (2010). Cerasicoccus maritimus sp. nov. and Cerasicoccus frondis sp. nov., two peptidoglycan-less marine Verrucomicrobial species, and description of Verrucomicrobia phyl. nov., nom. rev. The Journal of General and Applied Microbiology56(3), 213–222. http://doi.org/10.2323/jgam.56.213
  • Yousif, S. Y., Broome-Smith, J. K., & Spratt, B. G. (1985). Lysis of Escherichia coli by beta-lactam antibiotics : deletion analysis of the role of penicillin-binding proteins 1A and 1B. Journal of General Microbiology, 131(10), 2839–2845. http://doi.org/10.1099/00221287-131-10-2839
  • Yuan, Y., Barrett, D., Zhang, Y., Kahne, D., Sliz, P., & Walker, S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proceedings of the National Academy of Sciences of the United States of America,104(13), 5348–5353. http://doi.org/10.1073/pnas.0701160104
  • Zapun, A., Contreras-Martel, C., & Vernet, T. (2008). Penicillin-binding proteins and β-lactam resistance. FEMS Microbiology Reviews, 32(2), 361–385. http://doi.org/10.1111/j.1574-6976.2007.00095.x
  • Zapun, A., Philippe, J., Abrahams, K. a., Signor, L., Roper, D. I., Breukink, E., & Vernet, T. (2013). In vitro reconstitution of peptidoglycan assembly from the gram-positive pathogen Streptococcus pneumoniae. ACS Chemical Biology, 8(12), 2688–2696. http://doi.org/10.1021/cb400575t
  • Zawadzke, L. E., Bugg, T. D., & Walsh, C. T. (1991). Existence of two D-alanine:D-alanine ligases in Escherichia coli : cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry30(6), 1673–1682. http://doi.org/10.1021/bi00220a033
  • Zeng, X., & Lin, J. (2013). Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in Microbiology, 4(MAY), 1–9. http://doi.org/10.3389/fmicb.2013.00128
  • Zijderveld, C. a L., Aarsman, M. E. G., Den Blaauwen, T., & Nanninga, N. (1991). Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms. Journal of Bacteriology, 173(18), 5740–5746.
  • Zuber, B., Chami, M., Houssin, C., Dubochet, J., Griffiths, G., & Daffé, M. (2008). Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. Journal of Bacteriology190(16), 5672–5680. http://doi.org/10.1128/JB.01919-07