Search
Close this search box.

References

  • Acebes JL, Lorences EP, Revilla G, Zarra I (1993) Pine xyloglucan. Occurrence, localization and interaction with cellulose. Physiol Plant 89 : 417–422
  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. (2002) Molecular Biology of the Cell. 4th edition. New York : Garland Science
  • Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001). WAKs : cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol. 47 : 197-206.
  • Bar-Bedel M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and Salvage by Sugar Recycling. Annu. Rev. Plant Biol. 62 :127–55
  • Baskin T (2005) Anisotropic Expansion of the plant cell wall. Annu Rev Cell Dev Bio, 21 : 203-222 DOI : 10.1146/annurev.cellbio.20.082503.103053
  • Braccini I, Grasso RP, Perez S (1999) Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions : a molecular modeling investigation. Carbohydr Res 317:119–130
  • Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002) Xyloglucan Endotransglycosylases Have a Function during the Formation of Secondary Cell Walls of Vascular Tissues. Plant Cell 14 : 3073–3088. doi : 10.1105/tpc.007773
  • Burgert I, Fratzl P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integrative and Comparative Biology, 49, 1, pp. 69–79doi : 10.1093/icb/icp026
  • Burton RA, Gidley, Fincher G (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology 6 : 724–732 DOI:10.1038/nchembio.439
  • Caffall K H, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344 1879–1900
  • Cartier N, Chambat G, Joseleau J-P (1988) Cell wall and extracellular galactoglucomannans from suspension-cultured Rubus fruticosus cells Phytochemistry 27 : 1361-1364
  • Chambat G, Karmous M, Marianne Costes M, Maria Picard M, Joseleau J-P (2005) Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12 : 117–125, 2005. 117 DOI : 10.1007/s10570-004-1040-z
  • Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta,  215 : 989–996
  • Chanzy HD, Grosrenaud A, Joseleau J-P, Dubé M, Marchessault RH (1982) Crystallization behavior of glucomannan. Biopolymers 21 : 301–319 DOI : 10.1002/bip.360210206
  • Carpita NC, Gibeaut DM (1993) Structural models of primarycell walls in flowering plants—consistency of molecularstructure with the physical-properties of the walls during growth. Plant J 3(1):1–30
  • Cosgrove D (2005) Growth of the plant cell wall. Nature Rev  : 851-861
  • Dammström S, Salmén L, Gatenholm P (2009) On the interaction between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources 4 : 3-14
  • Darvill JE, McNeil M, Darvill AG, Albersheim P (1980) Structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol66 : 1135–39
  • Dick-Pérez M, Zhang Y, Andre Salazar J, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry,50 : 989–1000 DOI : 10.1021/bi101795q
  • Dutton GGS, Joseleau J-P (1977) Hemicelluloses of redwood (Sequoia sempervirens). Cell Chem Technol 11 : 313-319
  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-Proteins : Key Regulators at the Cell Surface ? Plant Physiol, 153 : 403-419 doi:10.1104/pp.110.156000
  • Fagerstedt K, Mellerowicz E, Gorshkova T, Ruel K, J-P Joseleau (2014) Cell wall polymers in reaction wood (B Gardiner, J Barnett, P Saranpää, J Grill eds), Springer, pp 37-106 DOI 10.1007/978-3-642-10814-3
  • Fahlén J, Salmén L (2004) Pore and Matrix Distribution in the Fiber Wall Revealed by Atomic Force Microscopy and Image Analysis. Biomacromolecules, 6 : 433–438 DOI : 10.1021/bm040068x
  • Feingold DS, Avigad G (1980). Sugar nucleotide transformations in plants. In : P.K. Stumpf and E.E. Conn (Eds.) The Biochemistry of Plants : A Comprehensive Treatise, Vol. 3, Academic Press, New York, pp. 101–170
  • Fincher G (2009) Exploring the evolution of (1,3 ;1,4)-beta-D-glucans in plant cell walls : comparative genomics can help !. Curr Opin Plant Biol.12 : 140-7. DOI : 10.1016/j.pbi.2009.01.002
  • Fry S (1989) The Structure and Functions of Xyloglucan J Exp Bot 40 : 1-11 doi : 10.1093/jxb/40.1.1
  • Fry SC, Nesselrode BH, Miller JG, Mewburn BR (2008) Mixed-linkage (13,14)-beta-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytol 179 : 104-15. doi : 10.1111/j.1469 8137.2008.02435.x.
  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–8
  • Fry S, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, et al (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum 89 : 1-3
  • Fujino T, Sone Y, Mitsuishi Y, Itoh T (2000) Characterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl. Plant Cell Physiol 41 : 486–494
  • Fukawa H, Miwa K (2015) Synthesis of borate cross-linked rhamnogalacturonan II Front Plant Sci, 21 DOI.org/10.3389/fpls.2015.00223
  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P(2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta  218 : 27–36 DOI 10.1007/s00425-003-1073-9
  • Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82(1):59–73
  • Harris PJ (2006) Primary and secondary plant cell walls : a comparative overview. New Zealand Journal of Forestry Science 36 : 36–53
  • Hayashi, T. (1989) Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40 : 139–168
  • Hooke, Robert C. Micrographia : or Some Physiological Descriptions of Miniature Bodies Made by Magnifying Glasses. London, England : Jo. Martyn, and Ja. Allestry, 1665.
  • Ishii T, Toshiro Matsunaga T, Pellerin P, O’Neill MA, Darvill A, Albersheim P (1999) The plant cell wall polysaccharide Rhamnogalacturonan II self-assembles into a covalently cross-linked dimer. J Biol Chem274 : 13098-13104
  • Joseleau J-P (2007) Micro-scale approaches for wood cell wall analysis and structure. In The compromised wood workshop, K. Entwistle, P. Harris & J. Walker Eds., Univ. Canterbury, ISBN 0-473-12768-8 : 113-124
  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94 :9091–9095
  • Levy S, Maclachlan G, Staehelin LA (1997) Xyloglucan side chains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11 : 373–386.
  • Levy S, York WS, Stuikeprill R, Meyer B, Staehelin LA. 1991. Xyloglucan—the role of the fucosylated side-chain in surface-specific side-chain folding. Plant J 1 : 195–215
  • Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stalbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48 :29–39
  • Maeda Y, Awano T, Takabe K, Takabe K, Fujita M (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213 : 148 doi:10.1007/BF01282152
  • Makshakova O, Gorshkova TA, Mikshina PV,YF, Serge Perez (2016), Metrics and Structural Basis for Self-Aggregation of RhamnoGalacturonan-1, (in press)
  • Mazeau K, Charlier L (2012) The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19:337–349 DOI 10.1007/s10570-011-9643-7
  • Micheli F (2001) Pectin methylesterases : cell wall enzymes with important roles in plant physiology.  Trends in Plant Sci 6 : 414–419
  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96 : 323–334
  • McDougall GJ, Fry SC (1989) Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiol 89 : 883–887
  • Nishiyama, Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55 : 241–249
  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124 : 9074–9082
  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306
  • O’Neill MA, York WS. (2003) The composition and structure of primary cell walls. Rose JKC, editor. The Plant Cell Wall. Blackwell Publishers, Oxford, pp 1–54
  • Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfler H, Altmann F, Leonard R (2013) Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J 76 : 61-72 DOI : 10.1111/tpj.12271
  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158 : 1933-1943 DOI : http://dx.DOIorg/10.1104/pp.111.192880
  • Perez, S., Mazeau, K., & du Penhoat, C.H., (2000) The three-dimensional structures of the pectic polysaccharides, Plant Physiology and Biochemistry, 38, 37-55.
  • Perez S., Rodrıguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide : rhamnogalacturonan II. A structure in quest of a function. Biochimie 85 : 109–121
  • Perez, S., Tubiana, T., Imberty, A., & Baaden, M. (2015) ́Three-dimensional representations of complex carbohydrates and polysaccharides- SweetUnityMol : A video game based computer graphic software. Glycobiology, 25, 483−491.
  • Proseus TE Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina.Ann. Bot. 95 : 967–976
  • Reiter WD and Vanzin GF(2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Molecular Biology 47 : 95–113, 2001
  • Ruel K, Joseleau J-P (2005) Deposition of hemicelluloses and lignins during secondary wood cell wall assembly. In : Entwistle KM, Walker JCF (eds) The hemicelluloses workshop 2005. University of Canterbury, Christchurch, pp 103–113
  • Ruel K, Montiel M-D, Goujon T, Jouanin L, Burlat V, Joseleau JP (2002) Interrelation between lignin deposition and polysaccharide matrices during assembly of plant cell walls. Plant Biology 4 : 1–7
  • Salmén L (2015) Wood morphology and properties from molecular perspectives. Annals of Forest Science, 72 :679–684 DOI 10.1007/s13595-014-0403-3
  • Salmén L, Olsson A-M, Stevanic J, Simonović J, Radotić K (2012) Structural organisation of the wood polymers in the wood fibre structure. BioResources 7:521–532
  • Saulnier L, Crépeau M-J, Lahaye M, Thibault J-F, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Isolation and structural determination of two 5,5’-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr Res320 : 82-92
  • Saxena IM, Brown, RM Jr (2005) Cellulose biosynthesis : current views and evolving concepts.Ann. Bot. (Lond). 96 : 9–21
  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61 : 263-289. DOI : 10.1146/annurev-arplant-042809-112315
  • Showalter AM (1993) Structure and Function of Plant Cell Wall Proteins. The Plant Cell,  : 9-23
  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175
  • Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc. Natl Acad. Sci. USA 99 : 9055–9060, DOI : 10.1073/pnas.132080299
  • Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of Cellulose Microfibrils in Primary Cell Walls from CollenchymaPlant Physiology January 2013 vol. 161 no. 1 465-476 DOI.org/10.1104/pp.112. 206359
  • Varki A, Cummings RD, Aebi M, Parker NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliengenthart JFG, Lutteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Harimatsun H, York W, Taniguchi N, Kornfeld S (2015), Symbol Nomenclature for Graphical Representation of Glycans, Glycobiology, 25, 1323-1324.
  • Vega-Sánchez ME, Verhertbruggen Y, Scheller HV, Ronald PC(2013) Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal Behav 8 : e23143 doi : 10.4161/psb.23143
  • Vincken J-P, Schols HA, Oomen RJFJ, McCann M, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. implications for cell wall architecture. Plant Physiol.132 : 1781–1789.
  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11 : 301–7
  • Voragen A G J, Coenen, G-J, Verhoef, R P, & Schols H A (2009) Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry20 : 263–275.
  • Voragen AGJ, Schols HA, Visser RGF (2003) Advances in pectin and pectinase research. Kluwer Academic Publishers, Dordrecht, the Netherlands
  • Wende G, Fry SC. (1997) 2-O-β-D-xylopyranosyl-(5-O-feruloyl)-L-arabinose, a widespread component of grass cell walls. Phytochemistry44 : 1019–30
  • Yapo B (2001) Pectic substances : From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr Polym 86 :373–385
  • York et al (1990) Structure of plant cell walls. 29. Structural analysis of xyloglucan oligosaccharides by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. Carbohydr Res 200 : 9-31
  • Yuan TQ, Sun SN, Xu F, Sun RC (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative C’13 and 2D HSQC NMR spectroscopy. J Agric Food Chem 59 : 10604-10614
  • Zhang N, Li S, Xiong L, Hong H, Chen Y (2015) Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling Simul. Mater. Sci. Eng.23 : 85010-85024 doi:10.1088/0965-0393/23/8/085010
  • Zykwinska A, Thibault JF, Ralet MC (2008) Modelling of xyloglucan, pectins and pectic side chains binding onto cellulose microfibrils. Carbohydr Polym 74(1):23–30