Close this search box.

Glycosylated queuosines in tRNAs Optimize Translational Rate and Post-Embryonic Growth


X. Zhao, D. Ma, K. Ishiguro, H. Saito, S. Akichika, I. Matsuzawa, M. Mito, T. Irie , K. Ishibashi, , K. Wakabayashi, Y. Sakaguchi , T. Yokoyama , Y. Mishima, M. Shirouzu , S. Iwasaki, T. Suzuki , T. Suzuki


Cell, 2023 Nov 17:S0092-8674(23)01177-7., doi : 10.1016/j.cell.2023.10.026.

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. Q is further glycosylated with galactose and mannose to form galQ and manQ in vertebrate Tyr and Asp tRNAs. However, biogenesis and physiological relevance remain poorly understood. The authors report the biochemical identification of two RNA glycosylases, QTGAL and QTMAN, and the successful reconstitution of tRNA Q-glycosylation with nucleotide diphosphate sugars.

Q-glycosylation slowed elongation at the cognate codons UAC and GAC (GAU), respectively, according to ribosome profiling of knockout cells. The authors found that galactosylation of Q suppressed stop codon read-through. In addition, protein aggregates increased in cells lacking Q-glycosylation, suggesting that Q-glycosylation contributes to proteostasis. Cryo-EM of the human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylation.

Latest news

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling is a relatively...

Glycans, due to their variable compositions and highly dynamic conformations, significantly enhance the diversity of...

Advances in simulation, combined with technological developments in high-performance computing, have made it possible to...

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in...