Search
Close this search box.

Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High-Resolution STM Imaging

Author(s)

J. Seibel, G. Fittolani, H. Mirhosseini, X. Wu, S. Rauschenbach, K. Anggara, P. H. Seeberger, M. Delbianco, T. D. Kühne, U. Schlickum, K. Kern

Sources

Angew. Chem. Int. Ed. 2023, e202305733 doi.org/10.1002/anie.202305733

Carbohydrates are the most abundant organic material on Earth and the structural “material of choice” in many living systems. Nevertheless, the design and engineering of synthetic carbohydrate materials presently lag behind that of protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at the submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly.

The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantio-separation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

Latest news

The complexity of plant cell walls at different hierarchical levels still hinders the detailed understanding...

Plastic production reached 400 million tons in 2022, with packaging and single-use plastics accounting for...

Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However,...

The introduction of AlphaFold 2 has sparked a revolution in the modelling of protein structure...