Search
Close this search box.

Click-electrochemistry for the Rapid Labeling of Virus, Bacteria and Cell-Surfaces

Author(s)

S. Depienne, M. Bouzelha, E. Courtois, K. Pavageau, P-A Lalys, M. Marchand, D. Alvarez-Dorta, S. Nedellec, L. Marín-Fernández, C. Grandjean, M. Boujtita, D. Deniaud, M. Mével & S.G. Gouin

Sources

Nature Communication https://doi.org/10.1038/s41467-023-40534-0

Methods for direct covalent ligation of microorganism surfaces remain poorly reported and primarily based on metabolic engineering for bacteria and cell functionalization. While effective, a faster method avoiding the bio-incorporation step would be highly complementary. The authors used N- N-methyl luminol (NML), a fully tyrosine-selective protein anchoring group after one-electron oxidation, to label the surface of viruses, living bacteria and cells. The functionalization was performed electrochemically and in situ by applying an electric potential to aqueous buffered solutions of tagged NML containing the viruses, bacteria or cells.

The broad applicability of the click-electrochemistry method was explored on recombinant adeno-associated viruses (rAAV2), Escherichia coli (Gram-) and Staphylococcus epidermidis (Gram + ) bacterial strains, and HEK293 and HeLa eukaryotic cell lines. Surface electro-conjugation was achieved in minutes to yield functionalized rAAV2 that conserved structural integrity and infectivity properties and living bacteria and cell lines that were still alive and could divide.

Latest news

The complexity of plant cell walls at different hierarchical levels still hinders the detailed understanding...

Plastic production reached 400 million tons in 2022, with packaging and single-use plastics accounting for...

Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However,...

The introduction of AlphaFold 2 has sparked a revolution in the modelling of protein structure...