Search
Close this search box.

A ‘Glyco-Fluorine’ Code Revealing Differential Recognition by Glycan Binding Partners

Author(s)

• K. Hollingsworth, A. Di Maio, S.-J. Richards, J.-B. Vendeville, D.E. Wheatley, C. E. Council, T. Keenan, H. Ledru, H. Chidwick, H. Kun, F. Parmeggiani, A. Marchesi, W. Chai, R. McBerney, T.P. Kaminski, M. R. Balmforth, A. Tamasanu, S. Charnock, • S.L. Warriner, M.E. Webb, M.A. Fascione, S. Flitsch, M. C. Galan, T. Feizi, M.I. Gibson , Y.Liu, W.B. Turnbull, B. Linclau

Sources

https://doi.org/10.26434/chemrxiv-2023-4hn6k

Biosensing or diagnostic applications that use glycan sequences as targets are limited by the cross-reactivity of glycans. The authors introduce a library of synthetic analogues of a single glycan ligand as a powerful approach to obtaining fingerprint binding profiles since the binding sites of different proteins that all recognize a given glycan will not be identical.
glycofluorine_code.png
The article reports the enzymatic synthesis of a 150-member library of fluorinated Lewisx analogs (“glycofluoroforms”) using naturally occurring enzymes and fluorinated monosaccharide building blocks and the incorporation of a subset into lipid-bound glycan probes or into glyconanoparticles to probe protein binding in both high-throughput glycan microarray screening analyses and solution-based nanoparticle interaction studies. These fluorinated Lewisx analogues, which NMR studies showed to have very similar 3D structures to those of nonfluorinated Lewisx, showed varying degrees of increased or decreased binding to a range of proteins. Different proteins have different preferences and tolerances for binding.

Latest news

DIONYSUS is a database of protein-carbohydrate interfaces annotated according to proteins and carbohydrates’ structural, chemical...

Instruct-ERIC, ”the European Research Infrastructure Consortium for Structural biology research”, is a pan-European distributed research...

Computer-based tools for visualizing and manipulating molecular structures in real-time hold immense potential for accelerating...

Glycan-mediated interactions are crucial in biology and medicine, influencing signalling, immune responses, and disease pathogenesis....