Close this search box.

In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM


C-Y. Huang, P. Draczkowski, Y-S. Wang, C-Y. Chang, Y-C. Chien, Y-H. Cheng, Y-M. Wu, C-H. Wang, Y-C. Chang, Y-C. Chang, T-J. Yang, Y-X. Tsai, K-H. Khoo, H-W. Chang & S-T Danny Hsu


Nature Communications, 2022

The trimeric spike (S) glycoprotein of porcine epidemic diarrhoea virus (PEDV) is responsible for virus-host recognition and membrane fusion; it is the main target for vaccine development and antigenic analysis. The two strains’ atomic structures of the recombinant PEDV S proteins have been reported, but they reveal distinct N-terminal domain 0 (D0) architectures that may correspond to different functional states. The existence of the D0 is a unique feature of alphacoronavirus.
A combined cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) analysis establishes, in situ, the asynchronous S protein motions on intact viral particles of a highly virulent PEDV Pintung 52 strain. The cryo-EM-solved structure of the recombinant S protein derived from a porcine cell line reveals additional domain motions likely associated with receptor binding. The integration of mass spectrometry and cryo-EM, data delineates the complex compositions and spatial distribution of the PEDV S protein N-glycans. It demonstrates the functional role of a key N-glycan in modulating the D0 conformation.

Latest news

In biological systems, vascular networks play a pivotal role in regulating the chemical compositions of...

Amylose, a linear polymer comprised of α-1,4-linked glucopyranose units, is renowned for its propensity to...

Algae play an important ecological role as oxygen producers and carbon sequesters and are the...

Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but...