Search
Close this search box.

The Glycosaminoglycan Interactome 2.0

Author(s)

S.D. Vallet, C. Berthollier & S. Ricard-Blum

Sources

Am J Physiol Cell Physiol 322: C1271–C1278, 2022.

Glycosaminoglycans (GAGs) are complex linear polysaccharides covalently attached to core proteins (except for hyaluronan), where they form proteoglycans. They play vital roles in the organization of the extracellular matrix and at the cell surface, where they contribute to cell signalling and adhesion regulation. To explore the mechanisms and pathways underlying their functions, the authors generated an expanded dataset of 4,290 interactions corresponding to 3,464 unique GAG-binding proteins, four times more than the first version of the GAG interactome (Vallet, Clerc, and Ricard-Blum. J Histochem Cytochem 69: 93–104, 2021).
gag_enews.png
The increased size of the GAG network is primarily due to the addition of GAG-binding proteins captured from cell lysates and biological fluids by affinity chromatography and identified by mass spectrometry. The authors review the interaction repertoire of natural GAGs and synthetic sulfated hyaluronan, the specificity and molecular functions of GAG-binding proteins, and the biological processes and pathways they are involved in. This dataset also investigates the differences between proteins binding to iduronic acid-containing GAGs (dermatan sulfate and heparin/heparan sulfate) and those interacting with GAGs lacking iduronic acid (chondroitin sulfate, hyaluronan, and keratan sulfate).

Latest news

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling is a relatively...

Glycans, due to their variable compositions and highly dynamic conformations, significantly enhance the diversity of...

Advances in simulation, combined with technological developments in high-performance computing, have made it possible to...

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in...