Search
Close this search box.

Copper-coordinated cellulose ion conductors for solid-state batteries

Author(s)

C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M.N. Garaga, B.H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi & L. Hu

Sources

Nature | Vol 598 | 28 October 2021 https://doi.org/10.1038/s41586-021-03885-6

The authors report a general strategy for achieving high-performance solid polymer ion conductors by engineering molecular channels. These molecular channels are provided throughout the coordination of Cu2+ ions with one-dimensional cellulose nanofibrils, which enables the rapid transport of Li+ ions along the polysaccharide chains. This one-dimensional conductor allows ion percolation in thick LiFePO4 solid-state cathodes to be used in batteries with a high energy density. The success of this design strategy creates a class of polymer ion conductors that enable fast conduction by various cations (for example, Na+) with high room-temperature ionic conductivities that have so far been challenging for traditional polymer electrolytes.
cellilose_capture.png

Latest news

DIONYSUS is a database of protein-carbohydrate interfaces annotated according to proteins and carbohydrates’ structural, chemical...

Instruct-ERIC, ”the European Research Infrastructure Consortium for Structural biology research”, is a pan-European distributed research...

Computer-based tools for visualizing and manipulating molecular structures in real-time hold immense potential for accelerating...

Glycan-mediated interactions are crucial in biology and medicine, influencing signalling, immune responses, and disease pathogenesis....