Close this search box.

Copper-coordinated cellulose ion conductors for solid-state batteries


C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M.N. Garaga, B.H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi & L. Hu


Nature | Vol 598 | 28 October 2021

The authors report a general strategy for achieving high-performance solid polymer ion conductors by engineering molecular channels. These molecular channels are provided throughout the coordination of Cu2+ ions with one-dimensional cellulose nanofibrils, which enables the rapid transport of Li+ ions along the polysaccharide chains. This one-dimensional conductor allows ion percolation in thick LiFePO4 solid-state cathodes to be used in batteries with a high energy density. The success of this design strategy creates a class of polymer ion conductors that enable fast conduction by various cations (for example, Na+) with high room-temperature ionic conductivities that have so far been challenging for traditional polymer electrolytes.

Latest news

In biological systems, vascular networks play a pivotal role in regulating the chemical compositions of...

Amylose, a linear polymer comprised of α-1,4-linked glucopyranose units, is renowned for its propensity to...

Algae play an important ecological role as oxygen producers and carbon sequesters and are the...

Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but...