Search
Close this search box.

Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies

Author(s)

F.A. Lempp, L. Soriaga, M. Montiel-Ruiz, F. Benigni, J. Noack, Y-J Park, S. Bianchi, A.C. Walls, J.E. Bowen, J. Zhou, H. Kaiser, A. Joshi, M. Agostini, M. Meury, E. Dellota Jr, S. Jaconi, E. Cameroni, J. Martinez-Picado, J. Vergara-Alert, N. Izquierdo-Useros, H.W. Virgin, A. Lanzavecchia, D. Veesler, L.Purcell, A. Telenti & D. Corti

Sources

Nature, 2021, 598, 342–347. https://doi.org/10.1038/s41586-021-03925-1

SARS-CoV-2 infection, involves cell attachment and membrane fusion and relies on the Angiotensin-converting enzyme (ACE2) receptor. This later is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. The authors show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) act as attachment receptors. They enhance ACE2-mediated infection and modulate the neutralizing activity of different classes of spike-specific antibodies. These findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2. They reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies. One of these mechanisms possibly results in creating multinucleate viral factories, potentially enhanced by specific antibodies.

Latest news

In biological systems, vascular networks play a pivotal role in regulating the chemical compositions of...

Amylose, a linear polymer comprised of α-1,4-linked glucopyranose units, is renowned for its propensity to...

Algae play an important ecological role as oxygen producers and carbon sequesters and are the...

Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but...