Search
Close this search box.

Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies

Author(s)

F.A. Lempp, L. Soriaga, M. Montiel-Ruiz, F. Benigni, J. Noack, Y-J Park, S. Bianchi, A.C. Walls, J.E. Bowen, J. Zhou, H. Kaiser, A. Joshi, M. Agostini, M. Meury, E. Dellota Jr, S. Jaconi, E. Cameroni, J. Martinez-Picado, J. Vergara-Alert, N. Izquierdo-Useros, H.W. Virgin, A. Lanzavecchia, D. Veesler, L.Purcell, A. Telenti & D. Corti

Sources

Nature, 2021, 598, 342–347. https://doi.org/10.1038/s41586-021-03925-1

SARS-CoV-2 infection, involves cell attachment and membrane fusion and relies on the Angiotensin-converting enzyme (ACE2) receptor. This later is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. The authors show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) act as attachment receptors. They enhance ACE2-mediated infection and modulate the neutralizing activity of different classes of spike-specific antibodies. These findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2. They reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies. One of these mechanisms possibly results in creating multinucleate viral factories, potentially enhanced by specific antibodies.

Latest news

The complexity of plant cell walls at different hierarchical levels still hinders the detailed understanding...

Plastic production reached 400 million tons in 2022, with packaging and single-use plastics accounting for...

Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However,...

The introduction of AlphaFold 2 has sparked a revolution in the modelling of protein structure...