Search
Close this search box.

Architecture of a Catalytically Active Homotrimeric Plant Cellulose Synthase Complex

Author(s)

Purushotham, P., Ho, R., & Zimmer, J.†

Sources

P. Purushotham et al., Science 10.1126/science.abb2978 (2020).

Cellulose is an essential plant cell wall component. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components.
cellulase-2.png
The authors determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant conserved regions and helical exchange within the transmembrane segment, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which may facilitate protofibril formation. CesAs’ N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. These data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.

Latest news

Advances in simulation, combined with technological developments in high-performance computing, have made it possible to...

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in...

Glycosaminoglycans (GAGs) are linear acidic polysaccharides, ubiquitous molecules involved in a wide range of biological...

Bacterial biofilms are a prevalent multicellular life form in which individual members can undergo significant...