Search
Close this search box.

Bacterial Biopolymers: From Pathogenesis to Advanced Materials

Author(s)

M. Fata Moradali & B.H.A. Rehm

Sources

Nature Reviews Microbiology (2020)

Bacteria can synthesize various classes of these biopolymers, such as polysaccharides ), polyamides, polyesters and polyphosphates. Such bacterial polymers have two faces: when produced by pathogenic bacteria, these biopolymers function as major virulence factors, where when they are produced by non-pathogenic bacteria, they can be used as food ingredients or biomaterials.
biopolymers.png
Over the years, research has shed light on the molecular mechanism of their biosynthesis and identify new targets for antibacterial drugs. The review summarizes the role of bacterial polymers in pathogenesis, their synthesis and their material properties as well as approaches to design cell factories for the production of tailor-made bio-based materials suitable for high-value applications.

To reach this goal, many challenges have to be faced. There is a plethora of interacting components and multiple feedback loops in complex biological systems. The rational engineering of novel GRAS-certified cell factories and biopolymers remain challenging. It is important to reduce this complexity through systems biology to better inform genome-scale metabolic models, metabolic network modelling and computational simulations of large data sets that feed into synthetic biology approaches. Such advances will provide the foundation for efficient bioengineering strategies and accurate predictions for cell factory and bioprocess development.

Latest news

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling is a relatively...

Glycans, due to their variable compositions and highly dynamic conformations, significantly enhance the diversity of...

Advances in simulation, combined with technological developments in high-performance computing, have made it possible to...

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in...