Grenoble | France

Structure & Activités des Glycosaminoglycanes (SAGAG)

Preparation, structural characterization and biological assessment of Heparan Sulfate derived oligosaccharides

Romain Vivès

Romain.vives@ibs.fr

Structural Glycosciences Summer School, 7th of June 2023

GAGs in the world of glycans

S-Domain => >10⁹ possible saccharide sequences

48 possible disaccharides

=> 48² = 2304 tetrasaccharides => 48⁶ = 12x10⁹ dodecasaccharides

The AT-III/HS binding model

HO

ŇH

Ac

HO

0

SO₃

OH

HC

CO

SO3

NH

SO₃⁻

SO₃

The FGF-2/HS binding model

Binding to FGF-2

- > S Domain
- Minimum size : dp6
- > Importance of NS
- > Importance of IdoA
- Importance of 2S

Activation of FGF-2

- > S Domain
- Minimum size : dp10
- > Importance of NS
- > Importance of IdoA
- Importance of 2S
- Importance of 6S

Binding to FGF-2

- > S Domain
- Minimum size : dp6
- > Importance of NS
- > Importance of IdoA
- Importance of 2S

Activation of FGF-2

- > S Domain
- Minimum size : dp10
- > Importance of NS
- > Importance of IdoA
- > Importance of 2S
- Importance of 6S

Depolymerization of HS chains

1st step: separation according to size

2nd step: separation according to charge

Temps (minutes)

dp10

Purity of HS oligosdaccharides

PAGE Based purification of HS oligosdaccharides

Sous-espèces de dp10A 1 2 3 4

Structural analysis of HS oligosaccharides

Disaccharide (% of total)	RIdp10A	RIdp10B	RIdp10C	RIdp10D
∆ HexA-GlcNAc	16.3	15.9	10.5	7.7
∆HexA-GlcNAc,6S	8.3	9.3	11.9	15.4
Δ HexA-GlcNS	21.2	16.8	17.9	12.6
∆HexA-GlcNS,6S	4.2	7.5	6.6	10.5
Δ HexA,2S-GlcNS	40.7	37.9	29.9	14.9
ΔHexA,2S-GlcNS,6S	7.2	12.4	20.9	36.8
Δ HexA,2S-GlcNAc	2.1	nd	2.3	2.0
6-O-SO3 /oligosaccharide	0.98	1.47	1.98	3.14
2-O-SO3/oligosaccharide	2.51	2.52	2.66	2.69
N-SO ₃ /oligosaccharide	3.67	3.74	3.78	3.75

Functional analysis of HS oligosaccharides

ibs

Promotion of FGF-2 activity by HS oligosaccharides

dP10C

dP10B

dP10A

Disaccharide (% of total)	RIdp10A	RIdp10B	RIdp10C	RIdp10D
∆HexA-GlcNAc	16.3	15.9	10.5	7.7
∆HexA-GlcNAc,6S	8.3	9.3	11.9	15.4
△ HexA-GlcNS	21.2	16.8	17.9	12.6
∆HexA-GlcNS,6S	4.2	7.5	6.6	10.5
△HexA,2S-GlcNS	40.7	37.9	29.9	14.9
ΔHexA,2S-GlcNS,6S	7.2	12.4	20.9	36.8
∆HexA,2S-GlcNAc	2.1	nd	2.3	2.0
6-O-SO3/oligosaccharide	0.98	1.47	1.98	3.14
2-O-SO3 /oligosaccharide	2.51	2.52	2.66	2.69
N-SO3/oligosaccharide	3.67	3.74	3.78	3.75

Chemokines...

Chemokine receptor C 7 6 5 4 3 2 1 N Chemokine GAG

Tissue localization
Structural changes
Protection/activation
Oligomerization
Receptor presentation

Analysis of HS/protein interactions

SPR (surface plasmon resonance)

SDF1 α /HS interactions

Both require a saccharide motif of ~14 saccharides

RANTES

Vivès et al. Biochemistry 2002

Regulation of HS structure

The concept of GAGosome

Biotechnological applications : Use of sulfotransferases for the chemo-enzymatic synthesis of oligosaccharides

 $\begin{array}{cccc} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ & & & \\ \mathbf{HO} & \mathbf{O}_{2}\mathbf{C} & \mathbf{O} \\ & & & \mathbf{O}_{$

72: GICNS-GICA2S-GICNAc-IdoA R¹ = SO₃, R² = H, R³ = SO₃, R⁴ = Ac, R⁵ = H, R⁶ = H 73: GICNS-GICA2S-GICNS-IdoA R¹ = SO₃⁻, R² = H, R³ = SO₃⁻, R⁴ = SO₃⁻, R⁵ = H, R⁶ = H 74: GIcNS-GIcA2S-GIcNAc-IdoA2S $R^1 = SO_3^{-}, R^2 = H, R^3 = SO_3^{-}, R^4 = Ac, R^5 = H, R^6 = SO_3^{-}$ 75: GIcNS-GIcA2S-GIcNS-IdoA2S $R^1 = SO_3^{-}, R^2 = H, R^3 = SO_3^{-}, R^4 = SO_3^{-}, R^5 = H, R^6 = SO_3^{-}$ 76: GICNS-GICA2S-GICNAc6S-IdoA R¹ = SO₃⁻, R² = H, R³ = SO₃⁻, R⁴ = Ac, R⁵ = SO₃⁻, R⁶ = H 77: GlcNS-GlcA2S-GlcNS6S-IdoA $R^1 = SO_3^{-1}, R^2 = H, R^3 = SO_3^{-1}, R^4 = SO_3^{-1}, R^5 = SO_3^{-1}, R^6 = H$ 78: GICNS6S-GICA2S-GICNAc-IdoA R¹ = SO₃⁻, R² = SO₃⁻ R³ = SO₃⁻, R⁴ = Ac, R⁵ = H, R⁶ = H 79: GICNS6S-GICA2S-GICNS-IdoA $R^1 = SO_3^{-}, R^2 = SO_3^{-}R^3 = SO_3^{-}, R^4 = SO_3^{-}, R^5 = H, R^6 = H$ 80: GIcNS-GIcA2S-GIcNAc6S-IdoA2S $R^1 = SO_3^{-}, R^2 = H, R^3 = SO_3^{-}, R^4 = Ac, R^5 = SO_3^{-}, R^6 = SO_3^{-}$ 81: GIcNS-GIcA2S-GIcNS6S-IdoA2S R¹ = SO₃⁻, R² = H, R³ = SO₃⁻, R⁴ = SO₃⁻, R⁵ = SO₃⁻, R⁶ = SO₃⁻ 82: GlcNS6S-GlcA2S-GlcNAc-IdoA2S R¹ = SO₃⁻, R² = SO₃⁻, R³ = SO₃⁻, R⁴ = Ac, R⁵ = H, R⁶ = SO₃⁻ 83: GIcNS6S-GIcA2S-GIcNS-IdoA2S $R^{1} = SO_{3}, R^{2} = SO_{3}, R^{3} = SO_{3}, R^{4} = SO_{3}, R^{5} = H, R^{6} = SO_{3}$ 84: GIcNS6S-GIcA2S-GIcNAc6S-IdoA2S R¹ = SO₃⁻, R² = SO₃⁻, R³ = SO₃⁻, R⁴ = Ac, R⁵ = SO₃⁻, R⁶ = SO₃⁻ 85: GICNS6S-GICA2S-GICNS6S-IdoA2S $R^1 = SO_3^{-}, R^2 = SO_3^{-}, R^3 = SO_3^{-}, R^4 = SO_3^{-}, R^5 = SO_3^{-}, R^6 = SO_3^{-}$ 86: GICNS6S-GICA2S-GICNAc6S-IdoA R¹ = SO₃⁻, R² = SO₃⁻, R³ = SO₃⁻, R⁴ = Ac, R⁵ = SO₃⁻, R⁶ = H 87: GIcNS6S-GIcA2S-GIcNS6S-IdoA R¹ = SO₃⁻, R² = SO₃⁻, R³ = SO₃⁻, R⁴ = SO₃⁻, R⁵ = SO₃⁻, R⁶ = H

88: GICNS-GICA-GICNAc-IdoA $R^1 = SO_3$, $R^2 = H$, $R^3 = H$, $R^4 = Ac$, $R^5 = H$, $R^6 = H$ 89: GICNS-GICA-GICNS-IdoA R¹ = SO₃, R² = H, R³ = H, R⁴ = SO₃, R⁵ = H, R⁶ = H 90: GIcNS-GIcA-GIcNAc-IdoA2S $R^1 = SO_3^{-}, R^2 = H, R^3 = H, R^4 = Ac, R^5 = H, R^6 = SO_3^{-}$ 91: GICNS-GICA-GICNS-IdoA2S $R^1 = SO_3^{-}, R^2 = H, R^3 = H, R^4 = SO_3^{-}, R^5 = H, R^6 = SO_3^{-}$ 92: GIcNS-GIcA-GIcNAc6S-IdoA R¹ = SO₃⁻, R² = H, R³ = H, R⁴ = Ac, R⁵ = SO₃⁻, R⁶ = H 93: GIcNS-GIcA-GIcNS6S-IdoA R¹ = SO₃⁻, R² = H, R³ = H, R⁴ = SO₃⁻, R⁵ = SO₃⁻, R⁶ = H 94: GIcNS6S-GIcA-GIcNAc-IdoA $R^1 = SO_3^{-1}, R^2 = SO_3^{-1}R^3 = H, R^4 = Ac, R^5 = H, R^6 = H$ 95: GICNS6S-GICA-GICNS-IdoA $R^{1} = SO_{3}^{-}, R^{2} = SO_{3}^{-}, R^{3} = H, R^{4} = SO_{3}^{-}, R^{5} = H, R^{6} = H$ 96: GIcNS-GIcA-GIcNAc6S-IdoA2S $R^1 = SO_3^{*}, R^2 = H, R^3 = H, R^4 = Ac, R^5 = SO_3^{*}, R^6 = SO_3^{*}$ 97: GICNS-GICA-GICNS6S-IdoA2S R¹ = SO₃⁻, R² = H, R³ = H, R⁴ = SO₃⁻, R⁵ = SO₃⁻, R⁶ = SO₃⁻ 98: GIcNS6S-GIcA-GIcNAc-IdoA2S $R^1 = SO_3^{-}, R^2 = SO_3^{-}, R^3 = H, R^4 = Ac, R^5 = H, R^6 = SO_3^{-}$ 99: GlcNS6S-GlcA-GlcNS-IdoA2S R¹ = SO₃⁻, R² = SO₃⁻, R³ = H, R⁴ = SO₃⁻, R⁵ = H, R⁶ = SO₃⁻ 100: GIcNS6S-GIcA-GIcNAc6S-IdoA2S $R^1 = SO_3^{-1}, R^2 = SO_3^{-1}, R^3 = H, R^4 = Ac, R^5 = SO_3^{-1}, R^6 = SO_3^{-1}$ 101: GIcNS6S-GIcA-GIcNS6S-IdoA2S R¹ = SO₃⁻, R² = SO₃⁻, R³ = H, R⁴ = SO₃⁻, R⁵ = SO₃⁻, R⁶ = SO₃⁻ 102: GIcNS6S-GIcA-GIcNAc6S-IdoA $R^1 = SO_3^{-1}, R^2 = SO_3^{-1}, R^3 = H, R^4 = Ac, R^5 = SO_3^{-1}, R^6 = H$ 103: GICNS6S-GICA-GICNS6S-IdoA $R^1 = SO_3^{-}, R^2 = SO_3^{-}, R^3 = H, R^4 = SO_3^{-}, R^5 = SO_3^{-}, R^6 = H$

Glycan therapeutics

Baryal et al., 2022 Angew. Chem.Int. 62, e2022119

And so much more to talk about....

pubs.acs.org/jacsau

Glycosaminoglycans: What Remains To Be Deciphered?

Serge Perez,* Olga Makshakova, Jesus Angulo, Emiliano Bedini, Antonella Bisio, Jose Luis de Paz, Elisa Fadda, Marco Guerrini, Michal Hricovini, Milos Hricovini, Frederique Lisacek, Pedro M. Nieto, Kevin Pagel, Giulia R. Pairardi, Ralf Richter, Sergey A. Samsonov, Romain R. Vivès, Dragana Nikitovic, and Sylvie Ricard Blum

Thanks!

SAGAG/IBS

- V. Aho M. Bourgeais RJ Boustany P. Dutta M. Friedel E. Gout F. Leisico H. Lortat-Jacob R. Sadir
- S. Vallet
- M. Weber
- R. Wild
- A. Seffouh
- R. El Masri
- E. Crublet

Collaborations

- R. Daniel (LAMBE, Université d'Evry-Val d'Essonne)
- O. Filhol-Cochet (BIG, CEA-Grenoble)
- D. Bonnaffé/ C. le Narvor (ICMMO, Orsay)
- J. van den Born (University of Groningen, The Netherlands)
- E. Schmidt (University of Colorado, USA)
- ... and many others

Institutions/fundings

CNRS/CEA/UGA

GDR3739-GAG

ANR-2012, 2017, 2019, 2021 AGIR 2016 Glyco@Alps

UNIVERSITÉ

Grenoble

Alpes

cea