Neutron diffraction for deciphering protein-carbohydrate interactions in bacterial infection

Lukáš Gajdoš

gajdosl@ill.fr

Glytunes 2023

Lectins from pathogenic organisms

2

Protein-carbohydrate interactions

Wanted : Location of hydrogen atoms

H atoms "invisible" in X-ray structures

- Hydrogen atoms account for ~ half of all the atoms in proteins
- Critical roles in biological functions (enzyme mechanisms, ligand binding,..)
- Rarely observable in X-ray diffraction experiments

H atoms "invisible" in X-ray structures

- Hydrogen atoms account for ~ half of all the atoms in proteins
- Critical roles in biological functions (enzyme mechanisms, ligand binding,..)
- Rarely observable in X-ray diffraction experiments

Neutrons as a diffraction probe

- Interaction with atomic **nuclei**
- Scattering varies with elements and even isotopes of the same element (H/D)
- Non-destructive probe (room-temperature data collection)

Neutron coherent scattering length, b (fm)

Neutrons as a diffraction probe

- Interaction with atomic **nuclei**
- Scattering varies with elements and even isotopes of the same element (H/D)
- Non-destructive probe (room-temperature data collection)

Why neutron protein crystallography?

Advantages:

Visualisation of H/D atoms Nondestructive probe Ambient temperature

• Limitations:

Low flux of neutrons (compared to X-rays) Large sample size (mm³) Long data collections (days)

• Protein Data Bank:

174 899 X-ray crystal structures (May 2023)**212** neutron crystal structures (May 2023)

Neutron protein crystallography flow chart

Need of perdeuteration

L337

- Full replacement of all hydrogen (H) atoms by deuterium (D) atoms
- **Reduce** the large **incoherent** scattering of H (~ 40 times larger than for D)
- Reduces the background and increases the signal-noise ratio

1337

- Clearer visualization of neutron scattering density maps
- **Cancellation effects** limits visualization of CH_n groups

Need of perdeuteration

- Full replacement of all **hydrogen** (H) atoms by **deuterium** (D) atoms
- **Reduce** the large **incoherent** scattering of H (~ 40 times larger than for D)
- Reduces the background and increases the signal-noise ratio
- Clearer visualization of neutron scattering density maps
- **Cancellation effects** limits visualization of CH_n groups

Perdeuterated protein, D₂O solvent

Courtesy of prof. Trevor Forsyth

How to obtain perdeuterated biomolecules?

Adaptation of E.coli cells to deuterated medium

•

•

- Production of recombinant proteins in D₂O --- > D-Lab at ILL
- Fermentation (high cell-density cultures) of *E.coli*
 - **Deuterated carbon source** (glycerol-d₈, glucose-d₁₂)

Adaptation of *E. coli* to deuterated medium

How to obtain perdeuterated biomolecules?

Adaptation of E.coli cells to deuterated medium

•

•

- Production of recombinant proteins in D₂O --- > D-Lab at ILL
- Fermentation (high cell-density cultures) of *E.coli*
 - **Deuterated carbon source** (glycerol-d₈, glucose-d₁₂)

How to obtain perdeuterated biomolecules?

Adaptation of E.coli cells to deuterated medium

•

•

- **Production** of recombinant proteins **in D₂O** --- > D-Lab at ILL
- Fermentation (high cell-density cultures) of *E.coli*
 - **Deuterated carbon source** (glycerol-d₈, glucose-d₁₂)

Production of perdeuterated carbohydrates

- Glucose- d_{12} from algea grown in D_2O , hydrolysis of cellulose
- Direct deuteration on Raney nickel catalyst
- Chemical synthesis from deuterated precursors
- Chemoenzymatic
- Synthetic glycobiology (engineered organisms)

In vivo production of L-fucose-d₁₂ in *E. coli*

Fucose-producing strain of *E. coli* designed and enginereed by Dr. Eric Samain at CERMAV

OH OH OH

Overexpressed genes manB: phosphomannomutase manC: Man-1-P-guanyltransferase gmd: GDP-Man 4,6-dehydratase wcaG: GDP-L-fucose synthase **α-1,2-fucosidase α-1,2-fucosyltransferase**

Knocked-out genes lacZ: β-galactosidase fucI: fucose isomerase fucP: fucose permease

Production, purification and characterization of L-fucose- d_{12}

Large crystal growth

- To **compensate** for the **lower fluxes** of neutrons
- Typically 0.1-1 mm³ crystals needed
- **Optimization** of known conditions
- Vapour-diffusion, counter diffusion, seeding, feeding, microgravity..

Feeding over a period of several months

Laue diffractometer LADI-III at ILL

- Free neutrons produced by **nuclear fission**
- Moderated to decrease their energy from MeV to meV range

Laue diffractometer LADI-III at ILL

- Quasi-Laue diffraction method (pink beam of neutrons)
- Large cylindrical neutron-sensitive image plate detector
- Data collection at room temperature or cryo
- Crystal mounted in a quartz capillary

Neutron data reduction

- Quasi-Laue diffraction data indexed and integrated (*h*, *k*, *l*, I, sig(I), λ) using *LAUEGEN*.
 Intensities are λ-normalized using *LSCALE*.
- Data then processed with standard X-ray software from CCP4 (https://www.ccp4.ac.uk/).

Joint X-ray/neutron structure refinement

- Increases the data-to-parameters ratio
- Uses X-ray data to better define the atoms that are subjected to cancellation effects in neutron diffraction
- Using *phenix.refine* within the PHENIX suite
- H/D atoms added and refined individually

Preferences Help Ri	1		a vinage eactornelp			
Input data Refinemen	nt settings Output					
Input files						
File path C:\Users\gajdosl C:\Users\gajdosl C:\Users\gajdosl C:\Users\gajdosl C:\Users\gajdosl	VPhenix/JointXN_DLecB_Dfuc_L VPhenix/JointXN_DLecB_Dfuc_L VPhenix/JointXN_DLecB_Dfuc_L VPhenix/JointXN_DLecB_Dfuc_L	_G50B1\Refine_13\Joint _G50B1\FUL_restraints _G50B1\FUC_ligands.ci _G50B1\JointXN_DLecE	Format IXN_D ccp4_mtz ligan CIF f CIF 8_Dfu PDB	Data type X-ray data, X-ray R-free, Neutron data Restraints (CIF) Restraints (CIF) Input model		
Add file Re Space group : Pt	move file Modify file data typ 1211 V Unit cell : 52.8 experimental phases	Use symmetry fr	rom selected file		1	Befor
Data labels : High resolution :	F-obs-xray,SIGF-obs-xr ~	R-free label :	R-free-flags-xray ~	Test flag value : 1	u	
			LJ	<u>pre</u>		D
Wavelength :		Options				ĸ
Wavelength :		Options				R
Wavelength : Neutron data Data labels :	F-obs-neutron SIGF-obs ~	Options R-free label :	R-free-flags-neutron ~	Test flag value : 1		R
Wavelength : Neutron data Data labels : High resolution :	F-obs-neutron,SIGF-obs ~	Options R-free label : Low resolution :	R-free-flags-neutron ~	Test flag value : 1		R

2F_o-F_c electron density e and after refinement:

4 0

 $2F_{o}-F_{c}$ neutron scattering length density

	Initial (X-ray)	Final (X-ray)	Initial (neutron)	Final (neutron)
R-work	0.1047	0.1042	0.3126	0.1914
R-free	0.1422	0.1419	0.3487	0.2461
Bonds	0.010	0.010	None	None
Angles	1.280	1.269	None	None

Neutron scattering length density maps

Perdeuterated fucose in the LecB binding site

Summary

- Neutron crystallography is a complementary technique to X-ray crystallography
- Provides experimental determination of hydrogen atom positions
- Unambiguous determination of protonation states, water orientations, ligand docking, H-bonding networks, proton transfer
- Perdeuteration is advantageous (smaller crystals needed and reduced data collection times)
- Crystals with volumes of **0.1-1 mm³**
- Room-temperature data collection (closer to physiological conditions)
- Joint XN refinement improves the model quality

Acknowledgements

Juliette Devos

Trevor Forsyth Michael Haertlein Life Sciences group

Anne Imberty Annabelle Varrot Molecular and structural glycobiology group

Matthew Blakeley

Central European Institute of Technology BRNO | CZECH REPUBLIC

