Molecular Simulations of Simple and Complex Carbohydrates

Elisa Fadda Department of Chemistry Maynooth University elisa@mastoclon.world

@alisaTalisa У

Outline slido.com

- What are carbohydrates?
- Carbohydrates **3D** structure
- Intrinsic disorder and conformational ensembles
- Classical force fields representations
- Enhanced sampling and difficult cases
- Sequence-to-structure relationships through MD and molecular recognition

2

• The SARS-CoV-2 S as a case study

Amylose

There's plenty of other sugars!

Glycan 3D Structure: Glycosidic linkages

Glycans, the furry side of cells

Mammalian cells have evolved a highly complex machinery **counting over 600 proteins** to build glycans, which 'decorate' the cell surface and most secreted proteins

Glycans, the furry side of cells

A friendly furry coat, that helps the cell move, and interact with its environment and with other cells and proteins

The immune system recognises its own glycans as "friends"

Exploited as the first port of entry for infection:

- •Bacteria
- Toxins
- Viruses (e.g. flu viruses)

Glycan 3D Structure: Glycosidic linkages

The \phi torsion is found preferentially in a \pm gauche conformation relative to the O5 ring oxygen ($\phi = \pm 70^{\circ}$)

The ψ torsion will adopt value(s) corresponding to a minimum steric compression, usually around $\psi = 180^{\circ}$ in disaccharides

The ω torsion can populate two or three different energy basins at $\omega = \pm 60^{\circ}$ and 180°

Each energy basin is associated with a flexibility in the range of $\pm 10^{\circ}$ -15°

Glycan 3D Structure: Glycosidic linkages

The chemical nature determines the glycans' intrinsic disorder

Fadda, *Curr Opin Chem Biol* (2022) DOI: /10.1016/j.cbpa.2022.102175 Harbison *et al, Glycobiology* (2019), DOI:10.1093/glycob/cwy097 Woods, *Chem Rev* (2019) DOI: 10.1021/acs.chemrev.8b00032

Structural (Intrinsic) Disorder

Spatiotemporal Resolution in Biophysics

Dror et al, JGP (2010): DOI 10.1085/jgp.200910373

3D Structure(s) of Complex Carbohydrates

Fadda, Curr Opin Chem Biol (2022) DOI: /10.1016/j.cbpa.2022.102175

Maxwell I. Zimmerman^{1,2}, Justin R. Porter^{1,2}, Michael D. Ward^{1,2}, Sukrit Singh^{1,2}, Neha Vithani^{1,2}, Artur Meller^{1,2}, Upasana L. Mallimadugula^{1,2}, Catherine E. Kuhn^{1,2}, Jonathan H. Borowsky^{1,2}, Rafal P. Wiewiora^{3,4}, Matthew F. D. Hurley⁵, Aoife M Harbison⁶, Carl A Fogarty⁶, Joseph E. Coffland⁷, Elisa Fadda⁶, Vincent A. Voelz⁵, John D. Chodera⁴, Gregory R. Bowman^{1,2,*}

Nat Chem (2021) DOI: 10.1038/s41557-021-00707-0

A Classical Representation is Good Enough

According to the Born Oppenheimer (BO) or adiabatic approximation, we can separate the motion of the nuclei from the motion of electrons and safely assume that **the electron cloud adjusts instantly to changes in the nuclear configuration**

This 'translates' into nuclei carrying a fixed net charge q (point charges) obtained by a projection of the QM electrostatic potential and long range attractive and short range repulsive, van Der Waals type potentials

Classical Mechanics Representation

Atoms are represented by hard impenetrable spheres

Atoms are connected by springs representing bond stretching, angle and torsion bending

Electrostatics are represented by a **Coulomb potential**

Dispersion and short range steric repulsion are represented by a **Lennard-Jones potential**

Classical Mechanics Representation

Atoms are represented by hard impenetrable spheres

Atoms are connected by springs representing bond stretching, angle and torsion bending

Classical Mechanics Representation

1.Positions of all atoms at *t(0)* given by the PDB

2.Corresponding potential energy *U*(*r*) given by the force field

These steps are iterated through integration over **2 fs** time steps to generate what we call **an MD trajectory**

Some questions you should ask

- What information can I obtain from classical, all-atoms MD simulations?
- Poll at <u>slido.com</u> select #3173816 to vote
- Does the outcome of a simulation depend on the choice of force field? YES
- Is any force field good enough? NO
- What force field should I choose?
- Does the starting structure matter?
- How long should I run an MD simulation for?

GLYCAM06 Carbohydrate Force Field

A complete, self-contained and transferable set of parameters for the simulation of carbohydrates and glycoconjugates

- Carbohydrates of all ring sizes and conformations for both monosaccharides and oligosaccharides (not open ring conformations)
- Parameters for N- and O-glycosidic linkages, developed in combination with the param99sb version of the AMBER protein force field
- · Parameters for sulfated (and not) GAGs

GLYCAM06 is a 'stand alone' force field that can in principle be combined to any other protein ff (non-covalent linkages)

It is the only ff that uses the same atom type (CG) for a and b anomers allowing for ring conformational changes (puckering)

Workshop: Building blood group epitopes with GLYCAM-Web

Kirschner *et al J Comp Chem* (2008) 29(4): 622–655 Fadda, *Curr Opin Chem Biol* (2022) DOI: /10.1016/j.cbpa.2022.102175 Fadda, **2** omprehensive Glycoscience 2nd Ed (2021) DOI:1/0.1016/B978-0-12-819475-1.00056-0

CHARMM36 Carbohydrate Force Field

CHARMM36 Carb parameter set (PAR_ALL36_CARB.PRM) to be used in combination with CHARMM36 parameters for proteins

42. Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD., Jr CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein Modeling. J Chem Theory Comput. 2011;7 (10):3162–3180.

43. Mallajosyula SS, MacKerell AD., Jr Influence of Solvent and Intramolecular Hydrogen Bonding on the Conformational Properties of O-Linked Glycopeptides. J Phys Chem B. 2011;115 (38):11215–11229.

44. Mallajosyula SS, Guvench O, Hatcher E, MacKerell AD., Jr CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. J Chem Theory Comput. 2012 doi: 10.1021/ct200792v.

<u>J Chem Theory Comput.</u> 2018 Jun 12;14(6):3132-3143. doi: 10.1021/acs.jctc.8b00175. Epub 2018 May 4.

CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses.

Aytenfisu AH¹, Yang M^{1,2}, MacKerell AD Jr¹.

Fadda, *Curr Opin Chem Biol* (2022) DOI: /10.1016/j.cbpa.2022.102175 Fadda, *Comprehensive Glycoscience 2nd Ed* (2021) DOI:1/0.1016/B978-0-12-819475-1.00056-0

Does the starting structure matter?

Sampling: How long is long enough?

It depends on the system, on its intrinsic flexibility, on the chosen ff and on the question you would like to answer. **BUT** it all boils down to <u>statistics</u>, sampling is enough when you reach an answer supported by a **statistically relevant set of uncorrelated data**

Sampling: How long is long enough?

Fadda, *Curr Opin Chem Biol* (2022) DOI: /10.1016/j.cbpa.2022.102175 Fadda, *Comprehensive Glycoscience 2nd Ed* (2021) DOI:1/0.1016/B978-0-12-819475-1.00056-0

Enhanced Sampling Techniques

- Deterministic: Multiple independent (uncorrelated) parallel MD runs
- Deterministic with stochastic exchanges: Replica-Exchange, Fold-It
- Biased-potentials Simulations: Metadynamics, PMF, Umbrella Sampling
- Stochastic: Monte Carlo (MC) simulations, Brownian dynamics

Harbison *et al, Glycobiology* (2019), 29:94 Mayes *et al, JACS* (2014), 136:1008

25

Confomational sampling from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH

The MD trajectory was extended to $1 \mu s$ to analyze the conformational behavior of the sugar. A visual analysis has shown that there is a significant conformational change occurring at first around 60 ns.

The conformational change lasts for about 40 ns. If the MD trajectory was of 100 ns, **the relative stability of the 2 conformations would have been 60:40**, largely overestimated.

Over 1 μs the ratio is 76:24 => $|\Delta G^\circ|$ \approx 3 kJ/mol

Structural Glycoscience Summer School, June 2023

Structural Glycoscience Summer School, June 2023

Confomational sampling from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH

Harbison *et al, Glycobiology* (2019), 29:94 Mayes *et al, JACS* (2014), 136:1008

PDB 5AJB

Recognition of rare conformations

X-ray structure of the RSL lectin in complex with Lewis X tetrasaccharide

Understand molecular recognition of carbohydrates:

- Structure
- Energetics

 $\Delta G^{\circ} = -RTln \frac{[conf \ 1]}{[conf \ 2]}$

Topin et al, ACS Chem Biol (2016) DOI: 10.1021/acschembio.6b00333

What we have learned so far...

MD is a powerful structural biology tool that allows us to understand molecular structure, dynamics and function/behaviour at the atomistic level of detail

The above is true **ONLY** when the system is properly equilibrated and the simulation is converged, i.e. data obtained are statistically significant and reproducible within the given limitations of the model

Within these constrains, the characterisation of the glycans conformational propensity allows us to understand molecular recognition and related functions of glycans in biology

BUT, as any other research method, MD is far from an easy plug-in...

Rebuilding glycoproteins with MD libraries

Bagdonas, Fogarty *et al*, *Nat Struct Mol Biol* (2021) DOI:10.1038/s41594-021-00680-9 *GlycoShape.ie* (under construction 2014), **Ives C., Singh O.**, Fogarty, C, Harbison, A, Satheesan, A, D'Andrea S, Tropea B, Cuxart-Sanchez I, Khaleque M

Rebuilding glycoproteins with MD libraries

Bagdonas, Fogarty et al, Nat Struct Mol Biol (2021) DOI:10.1038/s41594-021-00680-9

GlycoShape.ie (under construction 🚧 🕵), Ives C., Singh O., Fogarty, C, Harbison, A, Satheesan, A, D'Andrea S, Tropea B, Cuxart-Sanchez I, Khaleque M

Rebuilding glycoproteins with MD libraries

Bagdonas, Fogarty *et al*, *Nat Struct Mol Biol* (2021) DOI:10.1038/s41594-021-00680-9 *GlycoShape.ie* (under construction 2014), **Ives C., Singh O.**, Fogarty, C, Harbison, A, Satheesan, A, D'Andrea S, Tropea B, Cuxart-Sanchez I, Khaleque M

Take home messages

Glycans are integral part of biomolecules regulating their folding, structural stability and biological functions. For this reason, glycans need to be re-integrated within the structure where present

Computer simulation methods, such as MD, are powerful tools to reconstruct and study the effects of glycosylation in biomolecular structure and function, **but** they need to be used correctly and the results interpreted within the limitations of the model systems

An appropriate choice of force field, simulation time and/or sampling technique and starting structure are determinant in obtaining meaningful insight, which should always be backed by statistics

Reconstructing protein glycosylation is not for the faint-of-heart, but *GlycoShape* will help, so stay tuned!

