

Protein-carbohydrate interactions: Isothermal Titration Calorimetry

Professor Bruce Turnbull

School of Chemistry and Astbury Centre for Structural Molecular Biology University of Leeds

Cholera Toxin

Structure of CTB-GM1os Complex

Branched oligosaccharide holds the protein in a "two fingered grip" Extensive H-bonding between the three terminal residues and the protein Remaining sugars point away from the protein – site of lipid attachment

E.A. Merritt, P. Kuhn, S. Sarfaty, J.L. Erbe, R.K. Holmes, W.G.J. Hol, J. Mol. Biol. 1998, 282, 1043-1059.

Receptor-ligand interaction

High affinity = large K_a , small K_d

Basic Thermodynamics...

$\Delta G^{\circ} = -RT \ln K_a$

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ Free Energy Enthalpy Entropy

High affinity = large K_a , small K_d , large $-\Delta G^\circ$

Enthalpy

• i.e. water

$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Entropy

$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Changes in disorder

- Independent rotational and translational degrees of freedom
 - A complex is less disordered than two molecules
- Internal conformational dynamics

•Flexible molecules lose entropy on binding

- Dynamics of the solvent
 - i.e. water

Calorimetry – Measuring Heat

- Lavoisier and Laplace calorimeter to measure the element "caloric" in a sample of combustible oil (1784)
- oil burned in a lamp surrounded by ice
- heat determined by measuring amount of melted ice

Microcalorimetry

Differential Scanning Calorimetry

- Solution heated/cooled from 10-100 °C
- Used to measure unfolding temp and ΔH^{o}

Isothermal Titration Calorimetry

- Sample maintained at constant temp while two solutions are mixed
- Used to measure
 - protein-ligand interactions
 - enzyme reactions
 - ∆*H*°

PEAQ-DSC

What's Inside an Isothermal Titration Calorimeter?

Two calorimeter cells

- the sample cell usually contains the protein receptor solution
- the reference cell usually contains water

What's Inside an Isothermal Titration Calorimeter?

Setting up the experiment (MicroCal VP-ITC)

Load the sample cell and the syringe

What's Inside an Isothermal Titration Calorimeter?

The first injection

A small throw-away injection as ligand diffuses into the cell during equilibration...

The second injection

Should be a lot bigger...

The Titration Data

Start of titration

- large peaks lots of complex formed on each injection
- equal height virtually every ligand molecule becomes bound to receptor

How do we determine ΔH° and ΔG° from the curve?

How do we determine ΔH° and ΔG° from the curve?

For 1:1 binding of ligand X and receptor M

$$X + M \implies MX$$

$$\frac{dQ}{d[\mathbf{X}]_{t}} = \Delta H^{\circ} V_{0} \left[\frac{1}{2} + \frac{1 - \left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right) - \left(\frac{K_{d}}{[\mathbf{M}]_{t}} \right)}{2\sqrt{\left[1 + \left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right) + \left(\frac{K_{d}}{[\mathbf{M}]_{t}} \right) \right]^{2} - 4\left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right)}} \right]$$

Isothermal Titration Calorimeter

How do we determine ΔH° and ΔG° from the curve?

For 1:1 binding of ligand X and receptor M

$$X + M \implies MX$$

$$\frac{dQ}{d[\mathbf{X}]_{t}} = \Delta H^{\circ} V_{0} \left[\frac{1}{2} + \frac{1 - \left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right) - \left(\frac{K_{d}}{[\mathbf{M}]_{t}} \right)}{2\sqrt{\left[1 + \left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right) + \left(\frac{K_{d}}{[\mathbf{M}]_{t}} \right) \right]^{2} - 4\left([\mathbf{X}]_{t} / [\mathbf{M}]_{t} \right)}} \right]$$

Shape of the curve depends on the value of c

$$\boldsymbol{c} = \frac{1}{K_d / [\mathbf{M}]_t} = \frac{[\mathbf{M}]_t}{K_d} = K_a [\mathbf{M}]_t$$

$$c = \frac{\left[\mathbf{M}\right]_t}{K_d}$$

c > 10

sigmoidal curve that becomes steeper as c increases

c < 10

Curve becomes flatter

$$c = \frac{\left[\mathbf{M}\right]_{t}}{K_{d}}$$

c > 1000

 $[M]_{total} >> K_d$

slope is too steep to determine *K*_d

only ∆H° and n can
 be measured

For very high affinity ligands (low K_d) must use low receptor concentration

But low [M] gives very small signals... K_d limit = 1 nM

Cholera Toxin binds GM1os with $K_d = 40 \text{ nM}$

If [CTB] = $10 \mu M$ then c = 250

$$c = \frac{\left[\mathbf{M}\right]_t}{K_d}$$

c < 1

 $[M]_{total} << K_d$

Curve becomes very flat

For very low affinity ligands (high K_d) must use high receptor concentration

But proteins often soluble to only 1 mM...

 $K_{\rm d}$ limit = 1 mM

The Shape of the Binding Curve Changes if Receptor Concentration is Higher or Lower than K_d

Alternative Depiction of the ITC binding Isotherm

For very low affinity ligands (high K_d) can use low c-value titrations

But must add many equivalents of ligand... K_d limit = 50 mM?

W. B. Turnbull and A. H. Daranas, J. Am. Chem. Soc. 2003, 125, 14859-14866

"*c*-value" curve with heat vs. ligand to K_d ratio

ΔH° and K_{d} can still be determined but not stoichiometry

Must know concentrations accurately

Cholera Toxin binds Gal β OMe with K_d = 15 mM [CTB] = 145 μ M c = 0.01

Dissecting the GM1–CTB Interaction

Objective: to evaluate the contribution that each monosaccharide makes to the CTB—GM1 interaction in solution.

Disconnect oligosaccharide into fragments and measure each interaction with CTB

Very high and very low affinity systems can be studied using competition titrations

- High affinity ligand added to a solution of the low affinity complex
- High affinity ligand displaces the low affinity ligand
- Change in the apparent affinity and apparent enthalpy
- If parameters for one ligand are known, possible to calculate for the other ligand

Example Displacement Titrations

Very steep curve for high affinity ligand becomes more gentle in the presence of a lower affinity competing ligand

Summary of ITC Results

Ligand	<i>K</i> _d	∆G°	Δ H °	T∆S°	n
		calmol ⁻¹	calmol ⁻¹	calmol ⁻¹	
	43.3 ± 1.4 nM	-10,040 ± 20	-17,450 ± 30	-7,450 ± 30	1.00
0	14.8 ± 1.6 mM	-2,500 ± 70	-9,020 ± 480	-6,530 ± 480	0.94
	2.0 ± 0.2 mM	-3,670 ± 90	-4,350 ± 480	-690 ± 480	0.99
O	7.6 ± 0.8 mM	-2,890 ± 80	-10,150 ± 430	-7,270 ± 450	1.06
\	0.21 ± 0.1 M	-920 ± 280	-10,700 ± 8,600	-9,770 ±8340	1.06

GM1os pentasaccharide very high affinity

All fragments very low affinity

W. B. Turnbull, B. L. Precious, S. W. Homans, J. Am. Chem. Soc. 2004, 126, 1047-1054

Summary of ITC Results

Ligand	<i>K</i> _d	∆G°	Δ H °	T∆S°	n
		calmol ⁻¹	calmol ⁻¹	calmol ⁻¹	
	43.3 ± 1.4 nM	-10,040 ± 20	-17,450 ± 30	-7,450 ± 30	1.00

Big increase in affinity from Gal-GalNAc disaccharide to GM1 pentasaccharide

	7.6 ± 0.8 mM	-2,890 ± 80	-10,150 ± 430	-7,270 ± 450	1.06	
۵	However very similar $T\Lambda S^{0}$ for the two ligands					

However, very similar $1\Delta S^{\circ}$ for the two ligands.

Contribution of sialic acid is totally enthaplic

Implies extra interactions with no loss of conformational entropy

Change in Conformational Entropy on Binding

Terminal Gal-GalNAc linkage is more flexible than Sia-Gal linkage

• Greatest loss of conformational entropy for Gal binding

Middle subunit as a sausage depiction – the width of the sausage indicates how much the backbone atoms move on binding

• Tightening of loop around galactose on binding

Warning! Be careful how you interpret ΔH° !

ΔH° and T ΔS° change with temperature: ΔC_{p}

Depends on ΔC_{p}

– the change in specific heat capacity on binding
– ability of the system to absorb heat

T Δ S° also dependent on ΔC_{p} – Entropy-Enthalpy Compensation

 ΔG^{o} is essentially independent of temperature

ΔH^{o} can also be affected by coupled reactions e.g., proton transfer

 $\Delta H_{\text{observed}} = \Delta H_{\text{interaction}} + \Delta H_{\text{proton transfer}}$

Ligand binding sometimes coupled to proton transfer to or from the protein...

-size of $\Delta H_{\text{proton transfer}}$ depends on the buffer ionisation enthalpy

 must repeat titration in several different buffers

Summary

kcal/mol of injectant

ITC is a useful technique for studying many concentration-dependent solution phenomena

It is always preferable to have a sigmoidal curve

• 10 < *c* <500

However low affinity systems can be studied as low c-value curves

Low and high affinity systems can also be studied by competition titrations

Beware the effects of coupled reactions and $\Delta C_{\rm p}$ when interpreting $\Delta H^{\rm o}$

