

International Year of Crystallography

W. L. Bragg

The International Year of Crystallography 2014 (IYCr2014) commemorated the centennial of X-ray diffraction, which allowed the detailed study of crystalline material.

It also commemorated the 400th anniversary of Kepler's observation in 1611 of the symmetrical form of ice crystals, which began the wider study of the role of symmetry in matter.

Crystallography of Carbohydrates	
Molecular & Crystal Structures of Carbohydrates •Experimental Conditions and Limitations (X and N) •Crystalline Conformations of Oligosaccharides •Hydrogen Bonding in Crystalline Oligosaccharides •Packing Features •Powder Diffraction	
Crystalline Conformations of Oligosaccharides in Proteins •Experimental Conditions and Limitations •Oligosaccharides –Lectin Complexes •Glycosaminoglycan-Protein Complexes	
Crystalline Conformations of Polysaccharides •Experimental Conditions and Limitations •X-Ray Fiber Diffraction of Polysaccharides •X-Ray Fiber Diffraction using Synchrotron and Neutron Radiations •Electron Diffraction of Polysaccharides	

5

Crystalline Conformations of Polysaccharides

Electron Diffraction of Polysaccharides

Electrons are charged particles and interact with matter through the Coulomb forces. The incident electrons feel the influence of both the positively charged atomic nuclei and the surrounding electrons.

Electron diffraction of solids is usually performed in a **Transmission Electron Microscope** (TEM) where the electrons pass through a thin film of the material to be studied. The resulting diffraction pattern is then observed on a fluorescent screen, recorded on photographic film, on imaging plates or using a CCD camera.

Electron diffraction in TEM is subject to several important limitations.

The sample to be studied must be electron transparent, meaning the sample thickness must be of the order of 100 nm or less.

• Careful and time consuming sample preparation are needed.

• Many samples are vulnerable to radiation damage caused by the incident electrons.

Force-fields.	
$E_{bond} = \frac{k_b}{2} (l - l_0)^2 \qquad \longrightarrow k_b, \ l_0$	MM2
$E_{angl} = \frac{k_a}{2} (\theta - \theta_0)^2 \qquad \longrightarrow k_a, \ \theta_0$	MM3
$E = -\sum_{i=1}^{N} \frac{V_i}{V_i} [1 + \cos(\alpha t - \alpha)] \qquad \qquad$	MM4
$E_{torsion} - \sum_{i} \frac{1}{2} [1 + \cos(\omega_i - \gamma)] \longrightarrow V_i, \gamma$	AMBER
$E_{oop} = \frac{k_p}{2} \delta^2 \qquad \longrightarrow k_p$	GROMOS
$\mathbf{r} = \sum_{i=1}^{N} \sum_{j=1}^{N} q_{i} q_{j} \qquad \mathbf{a} \in \mathbf{a}$	CHARMM
$E_{elect} = \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} \frac{1}{4\pi\varepsilon_0 r_{ij}} \qquad \longrightarrow q_{ij} q_{jj}$	SCF
$E_{VdW} = \sum_{i=1}^{N} \sum_{j=i}^{N} 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \longrightarrow \varepsilon, \sigma$	TRIPOS
$\boldsymbol{E} = \boldsymbol{E}_{bond} + \boldsymbol{E}_{angl} + \boldsymbol{E}_{torsion} + \boldsymbol{E}_{oop} + \boldsymbol{E}_{elect} +$	E _{VdW} +

Carbo	hydrates
-Carbohydrate builders: the ✓ Molecular modelling programs:	starting point for simulations : Sybyl, MOE (not free for academia)
On-line servers (free for academ	CHEMICAL COMPUTING GROUP Molecular Operating Environment mia)
Glycon and AMBER Glycon rotein 3D Structure Decedicities	5.DE SWEET Modeling Tools Links
The Research Group of Professor Robert J. Woods	A Database of Polysachbaride 3D structures Build With Polys by A. Sarkar & S. Piner

	Carbohydrates				
-Carbohydrate builders: the starting point for simulations					
	Carbohydrate 3D Structure Predictor				
Configuration a B Isomer D Ring Type F 1C4 4C1 Project Name : obvcame	This tool allows you to generate 3D structures for linear and branched oligosaccharides. Please choose linkage configuration (α or β) Monosaccharides Man Gal Gic Ido All Alt Gul Tal Monosaccharides Man Gal Gic Ido All Alt Gul Tal Xyl Lyx Rib Ara Fru Psi Sor Tag Fuc Rib Ara Fru Psi Sor Tag GalA GicA IdoA NeuSAc GidNA HanNAc GalA GicA IdoA NeuSAc HONO NeuSGc Linkages 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 (Only letters, numbers, underscore ' ', dash '-', period '' are allowed in project name) (Only letters, numbers, underscore ' ', dash '-', period '' are allowed in project name) (Only letters, numbers, underscore ' ', dash '-', period '' are allowed in project name)				
Add Branches H	LP - How to build a Carbohydrate				

32

Source: X-ray - PDB NMP	Molecule Information		
Source. A-ray - PDB, NIVIR		Enzyme Nai	WDP-GlcNAc: α-1,3-mannosyl-glycoprotein β-1,2- N-acetylglucosaminyltransferase I (b-1,2-
Content:	Elizyme name	<i></i>	N-Acetylglucosaminyltransferase I)
Total · 375	Short name	Short nat	an Animal
10101 : 575	Origin	Organi	Oryctolagus cuniculus
Classification of the GTs	Organism	Resulting links	GicNAc(b1.2)Man
	Resulting linkage	Cazy Fam	Ly GT13
based on their origin:		Mechani	inverting
Animal, archea, bacteria,	Fold		1 leveles
nlant virus veast & fungi	Cazy Fmily	View representations	St. 1979
plant, virus, yeast & lungi	Mechanism		
Sub-classification based	PDB Code	PDB Code	1FOA
either on the function	Posolution	Resolution (A)	1.8 UDB GleNAr: Mr2+
or the fold is GT A GT P		Comments	glycerol
	Complexed with	Sequence	GlcNAc b1-2 Man
& GT-alike.	Comments	Reference	Unligil U. M., Zhou S., Yuwaraj S., Sarkar M., Schachter H., Rini X-ray crystal structure of rabbit
GTs are numbered according	Sequence		N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily
to the CAZY classification	Reference		EMBO J., (2000), 19, 5269
	Links (Madlina, BDB	LINKS	PDB Site Medline SwissProt CAZY
Search: family	LINKS (Medilile, PDB,	_	
	Swiss Prot, CAZY)	\sim	
PDB			
Authors	Display & Download		
Fold	3D Structure (Jmol Applet)		
Doculting linkage	Download PDB File		
Resulting IIIKage	Still Image	22	Providence in the second
Enzyme name	Summage		
Abbreviation	Download Image		

12/10/2016

12/10/2016

The Semantic Web

The semantic web is an extension of the web which promotes common data formats and exchange protocols –**Ressource Description Network (RDF)** to provide a common framework that allows data to be shared and reused across applications and community boundarie.

An **ontology** is a formal naming and definition of the types, properties, and interrelationships of the entities that relly or fundamentally exist for a particular domain. Ontologies are created to limit complexity and to organize information.

