
Annex III: Data Integration in Bioinformatics

Description

All data integration techniques presented in the previous paragraphs need touch points to be
implemented. In bioinformatics, a diversity of efforts have been carried out to provide standards and,
as a matter of fact, touch points across data sources. In this paragraph, we identify some areas of
study which are crucial to enforce standardisation and encourage data integration.

Standards

In life science, where data can be represented in many ways, widely adopted standards provide the
only ground for data exchange and data integration. To show why standards are so relevant, we take
the example of the amino acid naming convention. The 20 amino acids have a standard name that is
recognised worldwide. Additionally, each amino acid has a one and three letter codes that are used by
biologists around the globe. If a European biologist talks at a conference in Asia about the S amino
acid, everyone in the audience understands it is about Serine.

Nowadays, lots of initiatives for developing standards are arising. We took a list of the most famous
from a paper published by Lapatas et al. which is available in Table I (Lapatas et al. 2015). We will not
explore each of these initiatives, but we provide URLs for more information.

To conclude, we want to strive the importance of standards for data sharing. Standards facilitate data
re-use, limiting the work needed to integrate different data sources and the waste of potential datasets.

List of data standard initiatives. Courtesy of “Data integration in biological research : an overview”
(Lapatas et al. 2015).

OBO The Open Biological and Biomedical Ontologies www.obofoundry.orgEstablish a set of
principles for ontology development to create a suite of orthogonal interoperable reference
ontologies in the biomedical domain PMID=17989687
CDISC Clinical data interchange standards consortium www.cdisc.orgEstablish standards to
support the acquisition, exchange, submission and archive of clinical research data and metadata
PMID=23833735
HUPO- PSI Human Proteome Organisation- Proteomics Standards Initiative www.psidev.info
 Defines community standards for data representation in proteomics to facilitate data comparison,
exchange and verification PMID=16901219
Alliance Global Alliance for Genomics and Health genomicsandhealth.org Create interoperable
approaches to catalyze projects that will help unlock the great potential of genomic data
PMID=24896853
COMBINE Computational Modeling in Biology co.mbine.orgCoordinate the development of the
various community standards and formats for computational models PMID=25759811

MSI Metabolomics Standards Initiative msi-workgroups.sourceforge.net
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Define community-agreed reporting standards, which provided a clear description of the
biological system studied and all components of metabolomics studies PMID=17687353
RDA Research Data Alliance rd-alliance.org Builds the social and technical bridges that enable
open sharing of data across multiple scientific disciplines

Ontologies

In the last twenty years, several ontologies have been created in the biological and biomedical fields
(Bard & Rhee 2004 ; Hoehndorf, Schofield, & Gkoutos 2015 ; Kelso, Hoehndorf & Prüfer 2010). In
philosophy, an ontology describes “what exists”, whereas, in life science, it represents what exists in a
specific context, for example, diseases (Turk 2006). An ontology is defined as a collection of 
concepts and relationships used to characterise an area of concern.

To consolidate and coordinate the rapid spread of ontologies, in 2001, Ashburner and Lewis
established The Open Biomedical Ontology (OBO) consortium. The OBO ontologies form the basis of
OBO Foundry, a collaborative experiment based on the voluntary acceptance by its participants of an 
evolving set of principles that extend those of the original OBO (Smith et al. 2007). As stated in its
website, the OBO Foundry “is a collective of ontology developers that are committed to collaboration
and adherence to shared principles”, and its mission “is to develop a family of interoperable ontologies
that are both logically well-formed and scientifically accurate”.
OBO contains ten ontologies (June 2018) which are member ontologies like Gene Ontology (GO) and
more than a hundred candidate ontologies. To become member, a candidate ontology has to be
developed using OBO’s shared principles and validated by OBO members (Quesada-Martínez et al.
2017).
The growing use of OBO ontologies allows connecting more and more datasets using techniques like
the semantic web. This enhances data integration and fosters the creation of the web of data.

Formats and reporting guidelines

As data is increasingly generated by high throughput techniques, computers, equipped with
appropriate software, are required to store and analyse the information produced. In this scenario, data
formats play a critical role as they provide instructions to store data in a file. However, the scarcity of
well-designed data formats gives birth to many different standards that hamper data exchange and
data integration. Therefore, bioinformaticians are forced to build converters, spending more time to
clean data than to analyse them. Currently, to store Next Generation Sequence (NGS) data, there are
six common file formats : FASTQ, FASTA, SAM/BAM, GFF/GTF, BED, and VCF (Zhang 2016). 
To ease and foster data sharing, converters between different data format have been developed in
genomics, proteomics, etc. In this context, a good example is provided by the PRoteomics
IDEntifications (PRIDE) project (Vizcaíno et al. 2016). PRIDE is a centralised repository for proteomics
data which includes protein and peptide identification as well as post-translational modifications. Since
mass spectrometry data can be encoded with several formats, the PRIDE development team have
developed PRIDE Converter. This tool converts a large amount of mass spectrometry encoding
formats into a valid PRIDE XML ready for submission to the PRIDE repository (Barsnes et al. 2009).
With the gradual maturation of “omics”, a huge step forward has been made by adopting clear
guidelines to describe and depositing datasets. In this context, the first example of a concrete guideline
is represented by The Minimum Information About a Microarray Experiment (MIAME) (Brazma et al.
2001) . MIAME defines “the minimum information required to ensure that microarray data can be easily
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interpreted and that results derived from its analysis can be independently verified”. The use of MIAME
facilitates the creation of public repositories as well as the development of data analysis tools.
Following the example of MIAME, in 2007, Taylor et al. published The minimum information about a
proteomics experiment (MIAPE) (Taylor et al. 2007). Nowadays, proteomics guidelines are defined by
HUPO Proteomics Standards Initiative (Hermjakob 2006) which additionally proposes data formats and
controlled vocabularies (http://www.psidev.info). 
In general, these guidelines focus on defining the content and the structure of necessary information to
describe a specific experiment. Although they do not provide any technical solution for storing data,
some of them suggest standard file formats. 
To conclude, the use of minimum information guidelines together with suggested data formats enhance
the data integration progress and the reusability of datasets.

Identifiers

An identifier is a short list of characters which identifies a data entry. For example, UniProt (Bateman et
al. 2017) is using accession numbers, i.e. stable identifiers, to identify entries. When two or more
entries are merged, all the accession numbers are kept. In this case, one is the “Primary (citable)
accession number” whereas the others become “Secondary accession numbers”. To avoid any source
of uncertainty, it is not possible that one accession number refers to multiple proteins.
In life science, the information is spread across multiple databases, and each of them has developed
its identifiers. This leads to a multitude of identifiers to describe the same biological concept. However,
to facilitate data integration, databases have cross-referenced their entries with external resources
(See chapter 1 – Link integration). In UniProt, for example, each protein has a cross-reference section
which contains all external identifiers related to the same protein (3D structures, protein family,
genome annotation, etc) (Figure 4).
If all life science databases used the same identifier to characterise a biological concept, data
integration would be facilitated. However, the use of identifiers from established databases, like
UniProt or GenBank, in research papers is already a sign of progress.
In genomics, for example, most journals oblige researchers to deposit newly obtained DNA and amino
acid sequences to a public sequence repository (DDBJ/ENA/Genbank – INSDC) as part of the
publication process (Benson et al. 2018). Although this is happening in advanced fields like genomics
and proteomics, disciplines like glycomics are lagging behind.

Visualisation

In biology, data visualisation is an essential part of the research process. Scientists have always relied
on different visualisation means to communicate experimental results. Some domains of biology like
phylogeny (Allende, Sohn, & Little 2015) and pathway analysis (Tanabe & Kanehisa 2012) have
created specific visualisations that, nowadays, are considered a standard (i.e. phylogenic trees). The
spreading of high throughput technologies has complicated the panorama. The increasing quantity of
data and the integration of heterogeneous information have created new challenges for visualisation
experts.
For example, the rise of the next generation sequencing and the resulting availability of genome data
has prompted the need for new custom visualisations to show sequence alignments, expression
patterns or entire genomes (Gaitatzes et al. 2018).
Data visualisation is also becoming a crucial resource in the integration of multiple resources. General
purpose tools are available to overlay data from different data sources. An example is Cytoscape
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(Shannon et al. 2003), an open source software platform for visualising interaction networks and
biological pathways. Cytoscape gives the possibility to overlay networks with gene expression profiles,
annotation and other quantitative and qualitative data.

Category

1. News
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