Bibliography
Andre, S. ; Pieters, R. J. ; Vrasidas, I. ; Kaltner, H. ; Kuwabara, I. ; Liu, F. T. ; Liskamp, R. M. J. ; Gabius, H. J. Wedgelike Glycodendrimers as Inhibitors of Binding of Mammalian Galectins to Glycoproteins, Lactose Maxiclusters, and Cell Surface Glycoconjugates. ChemBioChem 2001, 2 (11), 822–830. https://doi.org/10.1002/1439-7633(20011105)2:11<822::AID-CBIC822>3.0.CO ;2-W.
Audfray, A. ; Varrot, A. ; Imberty, A. Bacteria Love Our Sugars : Interaction between Soluble Lectins and Human Fucosylated Glycans, Structures, Thermodynamics and Design of Competing Glycocompounds. Comptes Rendus Chim. 2013, 16 (5), 482–490. https://doi.org/10.1016/j.crci.2012.11.021.
Angioletti-uberti, StefanoTheory, simulations and the design of functionalized nanoparticles for biomedical applications : A. S. M. P. Theory, Simulations and the Design of Functionalized Nanoparticles for Biomedical Applications : A Soft Matter Perspective. npj Comput. Mater. 2017, No. October, 1–15. https://doi.org/10.1038/s41524-017-0050-y.
Bandlow, V. ; Liese, S. ; Lauster, D. ; Ludwig, K. ; Netz, R. R. ; Herrmann, A. ; Seitz, O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles : Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. J. Am. Chem. Soc. 2017, 139 (45), 16389–16397. https://doi.org/10.1021/jacs.7b09967.
Bernardi, A. ; Jiménez-Barbero, J. ; Casnati, A. ; De Castro, C. ; Darbre, T. ; Fieschi, F. ; Finne, J. ; Funken, H. ; Jaeger, K.-E. ; Lahmann, M. ; Lindhorst, T. K. ; Marradi, M. ; Messner, P. ; Molinaro, A. ; Murphy, P. V. ; Nativi, C. ; Oscarson, S. ; Penadés, S. ; Peri, F. ; Pieters, R. J. ; Renaudet, O. ; Reymond, J.-L. ; Richichi, B. ; Rojo, J. ; Sansone, F. ; Schäffer, C. ; Turnbull, W. B. ; Velasco-Torrijos, T. ; Vidal, S. ; Vincent, S. ; Wennekes, T. ; Zuilhof, H. ; Imberty, A. Multivalent Glycoconjugates as Anti-Pathogenic Agents. Chem. Soc. Rev. 2013, 42 (11), 4709–4727. https://doi.org/10.1039/C2CS35408J.
Bernetti, M. ; Masetti, M. ; Rocchia, W. ; Cavalli, A. Kinetics of Drug Binding and Residence Time. Annu. Rev. Phys. Chem. 2019, 70 (1), 143–171. https://doi.org/10.1146/annurev-physchem-042018-052340.
Beshr, G. ; Sommer, R. ; Hauck, D. ; Bodin, C. ; Hofmann, A. ; Titz, A. Development of a Competitive Binding Assay for the Burkholderia Cenocepacia Lectin BC2L-A and Structure Activity Relationship of Natural and Synthetic Inhibitors. MedChemComm 2016, 7, 519–530. https://doi.org/10.1039/c5md00557d.
Bhatia, S. ; Camacho, L. C. ; Haag, R. Pathogen Inhibition by Multivalent Ligand Architectures. J. Am. Chem. Soc. 2016, 138 (28), 8654–8666. https://doi.org/10.1021/jacs.5b12950.
Bonnardel, F. ; Mariethoz, J. ; Salentin, S. ; Robin, X. ; Schroeder, M. ; Perez, S. ; Lisacek, F. D. S. ; Imberty, A. Unilectin3d, a Database of Carbohydrate Binding Proteins with Curated Information on 3D Structures and Interacting Ligands. Nucleic Acids Res. 2019, 47 (D1), D1236–D1244. https://doi.org/10.1093/nar/gky832.
Boukareb, M. A. ; Rousset, A. ; Galanos, N. ; Méar, J. ; Gillon, E. ; Cecioni, S. ; Faure, K. ; Kipnis, E. ; Dessein, R. ; Matthews, S. E. ; Bentzmann, S. De ; Guéry, B. ; Cournoyer, B. ; Imberty, A. ; Darblade, B. ; Vidal, S. Evaluation of the Anti-Adhesive Properties of Glycoclusters against Pseudomonas Aeruginosa in Bacterial Lung Infection. J. Med. Chem. 2014, 1–12. https://doi.org/10.1021/jm500038p.
Burnouf, D. ; Ennifar, E. ; Guedich, S. ; Puffer, B. ; Hoffmann, G. ; Bec, G. ; Disdier, F. ; Baltzinger, M. ; Dumas, P. KinITC : A New Method for Obtaining Joint Thermodynamic and Kinetic Data by Isothermal Titration Calorimetry. J. Am. Chem. Soc. 2012, 134 (1), 559–565. https://doi.org/10.1021/ja209057d.
Checovich, W. J. ; Bolger, R. E. ; Burke, T. Fluorescence Polarization - a New Tool for Cell and Molecular Biology. 1926, 254–256.
Compain, P. Multivalent Effect in Glycosidase Inhibition : The End of the Beginning. Chem. Rec. 2020, 20 (1), 10–22. https://doi.org/10.1002/tcr.201900004.
Curk, T. ; Dobnikar, J. ; Frenkel, D. Design Principles for Super Selectivity Using Multivalent Interactions. Multivalency Concepts, Res. Appl. 2017, 75–101. https://doi.org/10.1002/9781119143505.ch3.
Curk, T. ; Dobnikar, J. ; Frenkel, D. Optimal Multivalent Targeting of Membranes with Many Distinct Receptors. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (28), 7210–7215. https://doi.org/10.1073/pnas.1704226114.
Dam, T. K. ; Roy, R. ; Pagé, D. ; Brewer, C. F. Negative Cooperativity Associated with Binding of Multivalent Carbohydrates to Lectins. Thermodynamic Analysis of the “Multivalency Effect.” Biochemistry 2002, 41 (4), 1351–1358. https://doi.org/10.1021/bi015830j.
Dam, T. K. ; Oscarson, S. ; Das, S. K. ; Page, D. ; Macaluso, F. ; Brewer, C. F. Thermodynamic , Kinetic , and Electron Microscopy Studies of Concanavalin A and Dioclea Grandiflora Lectin Cross-Linked with Synthetic Divalent Carbohydrates *. J. Biol. Chem. 2005, 280 (10), 8640–8646. https://doi.org/10.1074/jbc.M412827200.
Dam, T. K. ; Brewer, C. F. Effects of Clustered Epitopes in Multivalent Ligand-Receptor Interactions. Biochemistry 2008, 47 (33), 8470–8476. https://doi.org/10.1021/bi801208b.
Dam, T. K. ; Gerken, T. A. ; Brewer, C. F. Thermodynamics of Multivalent Carbohydrate-Lectin Cross-Linking Interactions : Importance of Entropy in the Bind and Jump Mechanism. Biochemistry 2009, 48 (18), 3822–3827. https://doi.org/10.1021/bi9002919.
Dam, T. K. ; Brewer, C. F. Multivalent Lectin-Carbohydrate Interactions Energetics and Mechanisms of Binding., 1st ed. ; Elsevier Inc., 2010 ; Vol. 63. https://doi.org/10.1016/S0065-2318(10)63005-3.
Dam, T. K. ; Talaga, M. L. ; Fan, N. ; Brewer, C. F. Measuring Multivalent Binding Interactions by Isothermal Titration Calorimetry, 1st ed. ; Elsevier Inc., 2016 ; Vol. 567. https://doi.org/10.1016/bs.mie.2015.08.013.
Dam, T. K. ; Fan, N. ; Talaga, M. L. ; Brewer, C. F. Stoichiometry Regulates Macromolecular Recognition and Supramolecular Assembly : Examples From Lectin-Glycoconjugate Interaction, Second Edi. ; Elsevier, 2017 ; Vol. 8. https://doi.org/10.1016/B978-0-12-409547-2.13810-7.
Di Iorio, D. ; Huskens, J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020, 9 (1), 53–66. https://doi.org/10.1002/open.201900290.
Dumas, P. ; Ennifar, E. ; Da Veiga, C. ; Bec, G. ; Palau, W. ; Di Primo, C. ; Piñeiro, A. ; Sabin, J. ; Muñoz, E. ; Rial, J. Extending ITC to Kinetics with KinITC. Methods Enzymol. 2016, 567, 157–180. https://doi.org/10.1016/bs.mie.2015.08.026.
Ernst, B. ; Magnani, J. L. From Carbohydrate Leads to Glycomimetic Drugs. Nat. Rev. Drug Discov. 2009, 8 (8), 661–677. https://doi.org/10.1038/nrd2852.
Fujimoto, Z. Basic Procedure of X-Ray Crystallography for Analysis of Lectin–Sugar Interactions ; 2014 ; Vol. 1200. https://doi.org/10.1007/978-1-4939-1292-6.
Fukui, S. ; Feizi, T. ; Galustian, C. ; Lawson, A. M. ; Chai, W. Oligosaccharide Microarrays for High-Throughput Detection and Specificity Assignments of Carbohydrate-Protein Interactions. Nat. Biotechnol. 2002, 20 (October), 1011–1017. https://doi.org/10.1038/nbt735.
Gabius, H. Cell Surface Glycans : The Why and How of Their Functionality as Biochemical Signals in Lectin-Mediated Information Transfer ; Critical Reviews in Immunology, 2006 ; Vol. 26.
Gabius, H. J. ; Andre, S. ; Jiménez-Barbero, J. ; Romero, A. ; Solís, D. From Lectin Structure to Functional Glycomics : Principles of the Sugar Code. Trends Biochem. Sci. 2011, 36 (6), 298–313. https://doi.org/10.1016/j.tibs.2011.01.005.
Gestwicki, J. E. ; Strong, L. E. ; Cairo, C. W. ; Boehm, F. J. ; Kiessling, L. L. Cell Aggregation by Scaffolded Receptor Clusters. Chem. Biol. 2002, 9 (2), 163–169. https://doi.org/10.1016/S1074-5521(02)00102-3.
Gomez-Casado, A. ; Dam, H. H. ; Yilmaz, M. D. ; Florea, D. ; Jonkheijm, P. ; Huskens, J. Probing Multivalent Interactions in a Synthetic Host-Guest Complex by Dynamic Force Spectroscopy. J. Am. Chem. Soc. 2011, 133 (28), 10849–10857. https://doi.org/10.1021/ja2016125.
Hauck, D. ; Joachim, I. ; Frommeyer, B. ; Varrot, A. ; Philipp, B. ; Möller, H. M. ; Imberty, A. ; Exner, T. E. ; Titz, A. Discovery of Two Classes of Potent Glycomimetic Inhibitors of Pseudomonas Aeruginosa LecB with Distinct Binding Modes. ACS Chem. Biol. 2013, 8 (8), 1775–1784. https://doi.org/10.1021/cb400371r.
Han, Z. ; Pinkner, J. S. ; Ford, B. ; Obermann, R. ; Nolan, W. ; Wildman, S. A. ; Hobbs, D. ; Ellenberger, T. ; Cusumano, C. K. ; Hultgren, S. J. ; Janetka, J. W. Structure-Based Drug Design and Optimization of Mannoside Bacterial FimH Antagonists. J. Med. Chem. 2010, 53 (12), 4779–4792. https://doi.org/10.1021/jm100438s.
Hardman, K. D. ; Ainsworth, C. F. Structure of Concanavalin a at 2.4-å Resolution. Biochemistry 1972, 11 (26), 4910–4919. https://doi.org/10.1021/bi00776a006.
Hirst, G. K. The Quantitative Determination of Influenza Virus and Antibodies by Means of Red Cell Agglutination. J Exp Med 1942, 75 (1), 49–64.
Huang, X. Fluorescence Polarization Competition Assay : The Range of Resolvable Inhibitor Potency Is Limited by the Affinity of the Fluorescent Ligand. J. Biomol. Screen. 2003, 8 (1), 34–38. https://doi.org/10.1177/1087057102239666.
Imberty, A. ; Varrot, A. Microbial Recognition of Human Cell Surface Glycoconjugates. Current Opinion in Structural Biology. Current Opinion in Structural Biology 2008, pp 567–576. https://doi.org/10.1016/j.sbi.2008.08.001.
Imberty, A. ; Mitchell, E. P. ; Wimmerová, M. Structural Basis of High-Affinity Glycan Recognition by Bacterial and Fungal Lectins. Curr. Opin. Struct. Biol. 2005, 15 (5), 525–534. https://doi.org/10.1016/j.sbi.2005.08.003.
Kakehi, K. ; Oda, Y. ; Kinoshita, M. Fluorescence Polarization : Analysis of Carbohydrate-Protein Interaction. Anal. Biochem. 2001, 297 (2), 111–116. https://doi.org/10.1006/abio.2001.5309.
Kitov, P. I. ; Bundle, D. R. On the Nature of the Multivalency Effect : A Thermodynamic Model. J. Am. Chem. Soc. 2003, 125 (52), 16271–16284. https://doi.org/10.1021/ja038223n.
Kohn, M. ; Benito, J. M. ; Mellet, C. O. ; Lindhorst, T. K. ; Garcia Fernández, J. M. Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay : Ligands for Concanavalin A. ChemBioChem 2004, 5 (6), 771–777. https://doi.org/10.1002/cbic.200300807.
Kotone Sano and Haruko Ogawa. Hemagglutination (Inhibition) Assay. Lectins Methods Protoc. Methods Mol. Biol. 2014, 47–52. https://doi.org/10.1007/978-1-4939-1292-6_4.
Laigre, E. ; Goyard, D. ; Tiertant, C. ; Dejeu, J. ; Renaudet, O. The Study of Multivalent Carbohydrate-Protein Interactions by Bio-Layer Interferometry. Org. Biomol. Chem. 2018, 16 (46), 8899–8903. https://doi.org/10.1039/c8ob01664j.
Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd Edition, Joseph R. Lakowicz, Editor ; 2006. https://doi.org/10.1007/978-0-387-46312-4.
Lanfranco, R. ; Jana, P. K. ; Tunesi, L. ; Cicuta, P. ; Mognetti, B. M. ; Di Michele, L. ; Bruylants, G. Kinetics of Nanoparticle-Membrane Adhesion Mediated by Multivalent Interactions. Langmuir 2019, 35 (6), 2002–2012. https://doi.org/10.1021/acs.langmuir.8b02707.
Lea, W. A. ; Simeonov, A. Fluorescence Polarization Assays in Small Molecule Screening. Expert Opin. Drug Discov. 2011, 6 (1), 17–32. https://doi.org/10.1517/17460441.2011.537322.
Lee, Y. C. ; Townsend, R. R. ; Hardy, M. R. ; Lönngren, J. ; Arnarp, J. ; Haraldsson, M. ; Lönn, H. Binding of Synthetic Oligosaccharides to the Hepatic Gal/GalNAc Lectin. Dependence on Fine Structural Features. J. Biol. Chem. 1983, 258 (1), 199–202.
Lee, Y. C. ; Lee, R. T. Carbohydrate-Protein Interactions : Basis of Glycobiology. Acc. Chem. Res. 1995, 28 (8), 321–327. https://doi.org/10.1021/ar00056a001.
Li, M. H. ; Choi, S. K. ; Leroueil, P. R. ; Baker, J. R. Evaluating Binding Avidities of Populations of Heterogeneous Multivalent Ligand-Functionalized Nanoparticles. ACS Nano 2014, 8 (6), 5600–5609. https://doi.org/10.1021/nn406455s.
Li, C. ; Hon, K. ; Ghosh, B. ; Li, P. ; Lin, H. Synthesis of Oligomeric Mannosides and Their Structure-Binding Relationship with Concanavalin A. Chem. Asian J. 2014, 9, 1786–1796. https://doi.org/10.1002/asia.201402029.
Li, D. ; Chen, L. ; Wang, R. ; Liu, R. ; Ge, G. Synergetic Determination of Thermodynamic and Kinetic Signatures Using Isothermal Titration Calorimetry : A Full-Curve-Fitting Approach. Anal. Chem. 2017, 89 (13), 7130–7138. https://doi.org/10.1021/acs.analchem.7b01091.
Lundquist, J. J. ; Toone, E. J. The Cluster Glycoside Effect. Chem. Rev. 2002, 102 (2), 555–578. https://doi.org/10.1021/cr000418f.
Maierhofer, C. ; Rohmer, K. ; Wittmann, V. Probing Multivalent Carbohydrate-Lectin Interactions by an Enzyme-Linked Lectin Assay Employing Covalently Immobilized Carbohydrates. Bioorganic Med. Chem. 2007, 15 (24), 7661–7676. https://doi.org/10.1016/j.bmc.2007.08.063.
Mammen, M. ; Dahmann, G. ; Whitesides, G. M. Effective Inhibitors of Hemagglutination by Influenza Virus Synthesized from Polymers Having Active Ester Groups. Insight into the Mechanism of Inhibition. J. Med. Chem. 1995, 38 (21), 4179–4190. https://doi.org/10.1021/jm00021a007.
Mammen, M. ; Choi, S. ; Whitesides, G. M. ChemInform Abstract : Polyvalent Interactions in Biological Systems : Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754–2794. https://doi.org/10.1002/chin.199909293.
Malik, A. ; Baig, M. ; Manavalan, B. Protein-Carbohydrate Interactions. Encycl. Bioinforma. Comput. Biol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-809633-8.20661-4.
Marchetti, R. ; Perez, S. ; Arda, A. ; Imberty, A. ; Jimenez-Barbero, J. ; Silipo, A. ; Molinaro, A. “Rules of Engagement” of Protein–Glycoconjugate Interactions : A Molecular View Achievable by Using NMR Spectroscopy and Molecular Modeling. Chemistry Open 2016, 5 (4), 274–296. https://doi.org/10.1002/open.201600024.
Martinez-Veracoechea, F. J. ; Frenkel, D. Designing Super Selectivity in Multivalent Nano-Particle Binding. PNAS 2011, 108 (27), 10963–10968. https://doi.org/10.1073/pnas.1105351108.
McCoy, J. P. ; Varani, J. ; Goldstein, I. J. Enzyme-Linked Lectin Assay (ELLA) : Use of Alkaline Phosphatase-Conjugated Griffonia Simplicifolia B4 Isolectin for the Detection of α-d-Galactopyranosyl End Groups. Anal. Biochem. 1983, 130 (2), 437–444. https://doi.org/10.1016/0003-2697(83)90613-9.
Meiers, J. ; Siebs, E. ; Zahorska, E. ; Titz, A. Lectin Antagonists in Infection, Immunity, and Inflammation. Curr. Opin. Chem. Biol. 2019, 53, 51–67. https://doi.org/10.1016/j.cbpa.2019.07.005.
Moerke, N. J. Fluorescence Polarization (FP) Assays for Monitoring Peptide‐Protein or Nucleic Acid‐Protein Binding. Curr. Protoc. Chem. Biol. 2009, 1 (1), 1–15. https://doi.org/10.1002/9780470559277.ch090102.
Mol, N. J. De ; Fischer, M. J. E. Surface Plasmon Resonance - Methods and Protocols ; Springer Protocols - Methods in Molecular Biology 627, 2010.
Pang, P. C. ; Chiu, P. C. N. ; Lee, C. L. ; Chang, L. Y. ; Panico, M. ; Morris, H. R. ; Haslam, S. M. ; Khoo, K. H. ; Clark, G. F. ; Yeung, W. S. B. ; Dell, A. Human Sperm Binding Is Mediated by the Sialyl-Lewisx Oligosaccharide on the Zona Pellucida. Science (80-. ). 2011, 333 (6050), 1761–1764. https://doi.org/10.1126/science.1207438.
Peterson, K. ; Kumar, R. ; Stenström, O. ; Verma, P. ; Verma, P. R. ; Håkansson, M. ; Kahl-Knutsson, B. ; Zetterberg, F. ; Leffler, H. ; Akke, M. ; Logan, D. T. ; Nilsson, U. J. Systematic Tuning of Fluoro-Galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit NM Affinity and High Selectivity. J. Med. Chem. 2018, 61 (3), 1164–1175. https://doi.org/10.1021/acs.jmedchem.7b01626.
Pieters, R. J. Maximising Multivalency Effects in Protein–Carbohydrate Interactions. Org. Biomol. Chem. 2009, 7 (10), 2013. https://doi.org/10.1039/b901828j.
Piñeiro, Á. ; Muñoz, E. ; Sabín, J. ; Costas, M. ; Bastos, M. ; Velázquez-Campoy, A. ; Garrido, P. F. ; Dumas, P. ; Ennifar, E. ; García-Río, L. ; Rial, J. ; Pérez, D. ; Fraga, P. ; Rodríguez, A. ; Cotelo, C. AFFINImeter : A Software to Analyze Molecular Recognition Processes from Experimental Data. Anal. Biochem. 2019, 577, 117–134. https://doi.org/10.1016/j.ab.2019.02.031.
Reynolds, M. ; Pérez, S. Thermodynamics and Chemical Characterization of Protein-Carbohydrate Interactions : The Multivalency Issue. Comptes Rendus Chim. 2011, 14 (1), 74–95. https://doi.org/10.1016/j.crci.2010.05.020.
Rich, R. L. ; Myszka, D. G. Survey of the 2009 Commercial Optical Biosensor Literature, 2011 (February), 892–914. https://doi.org/10.1002/jmr.1138.
Roy, R. ; Murphy, P. V. ; Gabius, H. J. Multivalent Carbohydrate-Lectin Interactions : How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016, 21 (5). https://doi.org/10.3390/molecules21050629.
Safina, G. Application of Surface Plasmon Resonance for the Detection of Carbohydrates, Glycoconjugates, and Measurement of the Carbohydrate-Specific Interactions : A Comparison with Conventional Analytical Techniques. A Critical Review. Anal. Chim. Acta 2012, 712, 9–29. https://doi.org/10.1016/j.aca.2011.11.016.
Schlick, K. H. ; Cloninger, M. J. Inhibition Binding Studies of Glycodendrimer/Lectin Interactions Using Surface Plasmon Resonance. Tetrahedron 2010, 66 (29), 5305–5310. https://doi.org/10.1016/j.tet.2010.05.038.
Sicard, D. ; Cecioni, S. ; Iazykov, M. ; Chevolot, Y. ; Matthews, S. E. ; Praly, J. P. ; Souteyrand, E. ; Imberty, A. ; Vidal, S. ; Phaner-Goutorbe, M. AFM Investigation of Pseudomonas Aeruginosa Lectin LecA (PA-IL) Filaments Induced by Multivalent Glycoclusters. Chem. Commun. 2011, 47 (33), 9483–9485. https://doi.org/10.1039/c1cc13097h.
Shinohara, Y. ; Hasegawa, Y. ; Kaku, H. Elucidation of the Mechanism Enhancing the Avidity of Lectin with Oligosaccharides on the Solid Phase Surface. 1997, 7 (8), 1201–1208.
Sörme, P. ; Kahl-Knutsson, B. ; Huflejt, M. ; Nilsson, U. J. ; Leffler, H. Fluorescence Polarization as an Analytical Tool to Evaluate Galectin-Ligand Interactions. Anal. Biochem. 2004, 334 (1), 36–47. https://doi.org/10.1016/j.ab.2004.06.042.
Stegmayr, J. ; Lepur, A. ; Kahl-Knutson, B. ; Aguilar-Moncayo, M. ; Klyosov, A. A. ; Field, R. A. ; Oredsson, S. ; Nilsson, U. J. ; Leffler, H. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-Binding Site by Pectins and Galactomannans. J. Biol. Chem. 2016, 291 (25), 13318–13334. https://doi.org/10.1074/jbc.M116.721464.
Sumner, J. B. ; Howell, S. F. Identification of Hemagglutinin of Jack Bean with Concanavalin A. J. Bacteriol. 1936, 32 (2), 227–237. https://doi.org/10.1128/jb.32.2.227-237.1936.
Tian, X. ; Angioletti-Uberti, S. ; Battaglia, G. On the Design of Precision Nanomedicines. Sci. Adv. 2020, 6 (4), 1–12. https://doi.org/10.1126/sciadv.aat0919.
Tjandra, K. C. ; Thordarson, P. Multivalency in Drug Delivery-When Is It Too Much of a Good Thing ? Bioconjug. Chem. 2019, 30 (3), 503–514. https://doi.org/10.1021/acs.bioconjchem.8b00804.
Tonge, P. J. Drug-Target Kinetics in Drug Discovery. ACS Chem. Neurosci. 2018, 9 (1), 29–39. https://doi.org/10.1021/acschemneuro.7b00185.
Varrot, A. Blanchard, A. I. Lectin Binding and Its Structural Basis. Carbohydr. Recognit. Biol. Probl. Methods, Appl. 2011, No. 13, 329–347.
Velàzquez-Campoy,A. H. Ohtaka, A. Nezami, S. Muzammil, and E. F. Isothermal Titration Calorimetry. Curr. Protoc. Cell Biol. 2004, No. 17.8, 1–24. https://doi.org/10.1002/0471143030.cb1708s23.
Wang, D. ; Liu, S. ; Trummer, B. J. ; Deng, C. ; Wang, A. Carbohydrate Microarrays for the Recognition of Cross-Reactive Molecular Markers of Microbes and Host Cells. 2002, 20 (March), 275–281.
Walker, J. M. ; Fotinopoulou, A. ; Turner, G. A. Glycoprofiling Purified Glycoproteins Using Surface Plasmon Resonance. Protein Protoc. Handbook, 2003, No. 5, 885–892. https://doi.org/10.1385/1-59259-169-8:885.
Wolfenden, M. L. ; Cloninger, M. J. Multivalency in Carbohydrate Binding. Carbohydr. Recognit. Biol. Probl. Methods, Appl. 2011, 349–370. https://doi.org/10.1002/9781118017586.ch14.
Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Philos. Mag. Ser. 6 1902, 4:21, 396–402.
Yu, G. ; Vicini, A. C. ; Pieters, R. J. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas Aeruginosa Lectin LecA. J. Org. Chem. 2019, 84 (5), 2470–2488. https://doi.org/10.1021/acs.joc.8b02727.