

ASPERGILLUS FUMIGATUS

- Saprophytic mold
- Human opportunistic pathogen
- spores ubiquitous in the environment
- The most common nosocomial fungal infection

Alergic bronchopulmonar aspergillosis aspergilloma

aspergilloma (fungus ball) in human lungs

invasive aspergillosis in the cerebrum

Invasive aspergillosis

SURFACE PLASMON F	RESONANC	CE	
Ligand	K _d (one site) [μΜ]	K _{d1} (two sites) [μΜ]	K _{d2} (two sites) [μM]
Fuc	110 ± 20	350 ± 20	7.1 ± 1.2
αMeFuc	120 ± 5.7	630 ± 450	80 ± 20
βMeFuc	260 ± 40	a)	a)
L-Gal	810 ± 70	a)	a)
αFuc(1-2)Gal	70 ± 3.4	100 ± 30	20 ± 20
αFuc(1-3)GlcNAc	60 ± 6	210 ± 20	7.5 ± 0.8
αFuc(1-4)GlcNAc	60 ± 7.6	240 ± 10	6.6 ± 0.5

L-Gal	810 ± 70	a)	a)
αFuc(1-2)Gal	70 ± 3.4	100 ± 30	20 ± 20
αFuc(1-3)GlcNAc	60 ± 6	210 ± 20	7.5 ± 0.8
αFuc(1-4)GlcNAc	60 ± 7.6	240 ± 10	6.6 ± 0.5
αFuc(1-6)GlcNAc	90 ± 6.7	200 ± 30	10 ± 4
Blood group A trisaccharide	70 ± 5.7	440 ± 180	30 ± 4.8
Blood group B trisaccharide	60 ± 5.4	190 ± 30	10 ± 2.1
Blood group H II type trisaccharide	70 ± 7.7	200 ± 30	9.1 ± 2.1
Lewis a trisaccharide	90 ± 20	540 ± 160	9.7 ± 2.6
Lewis X trisaccharide	150 ± 20	280 ± 30	4.4 ± 1.9
Lewis b tetrasaccharide	140 ± 8.3	220 ± 20	10 ± 5.1
Lewis Y tetrasaccharide	70 ± 5.8	120 ± 10	3.1 ± 1.6

IEAT SUG/	r st Ar/I	ABI MET	ABILITY OF AFL – SCREENING APPROACH: //ETAL SCREEN										
		1	2	3	4	5	6	7	8	9	10	11	12
	^	H2O	H2O Sia				D-Gal			D-Man			
	A		50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM
	D		L-Fuc				D-GlcNAc			D-Glc			
ars	D	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM
Sug	C		L-Rha D-Ara L-Ara										
•,	C	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM
	П		D-	Rib			D	-Xyl			Gly	cerol	
	U	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM	0.5 M	50 mM	5 mM	0.5 mM
	С		Li+				Na+		К+				
	L	2.5 M	250 mM	25 mM	2.5 mM	2.5 M	250 mM	25 mM	2.5 mM	2.5 M	250 mM	25 mM	2.5 mM
es)	F	Mg2+				С	Ca2+			Mn(II)			
orid	Г	2.5 M	250 mM	25 mM	2.5 mM	2.5 M	250 mM	25 mM	2.5 mM	2.5 M	250 mM	25 mM	2.5 mM
(chl	C		Fe	Fe(II) Co(II) Ni(II)									
ns	G	2.5 M	250	25 mM	2.5 mM	2.5 M	250	25 mM	2.5 mM	2.5 M	250	25 mM	2.5 mM
9			mM	./11\			M	o/UI)			mM	4/11/	
	Η	2.5 M	250	25 mM	2.5 mM	2.5 M	250	25 mM	2.5 mM	2.5 M	250	25 mM	2.5 mM
		2.3 101	mM	25 (1111)	2.5 11111	2.3 11	mM	25 1110	2.5 11111	2.3 11	mM	25 (1111)	2.3 1110

DECIPHERING PROTEIN/ CARBOHYDRATE INTERACTION

PSEUDOMONAS AERUGINOSA

- Gram-negative bacterium
- Opportunistic human pathogen
- Colonization cystic fibrosis patients (90% mortality)
- + Production of two soluble lectins PA-IL and PA-IIL

SOMETIMES, ATOMIC RESOLUTION DO NOT BRING ANSWERS...

BC2L-C	crystals	structure	oligomeric state
c- cerminal domain			dimer
I- erminal omain () e-Methionine odified protein			trimer
vhole rotein	\times	×	must be hexamer !

