Protein-sugar interaction:
Surface Plasmon Resonance (SPR) biosensor analysis
(Biacore™ technology)

Nicole THIELENS
Institut de Biologie Structurale, Grenoble

Overview

- Presentation of the Biacore™ technology
- Basic principles of SPR
- SPR detection and interaction analysis
- A typical interaction study
- SPR and lectin-carbohydrate interactions
- Examples
The Biacore™ technology

- Label-free, real time detection and monitoring of biomolecular interactions, based on SPR
- Information on a wide range of interaction parameters:
 - Specificity
 - Concentration
 - YES/NO binding response
 - How MUCH?
 - Affinity
 - How STRONG? K_D, K_A
 - Kinetics
 - How FAST? Rate constants k_a, k_d
 - Thermodynamics
 - Affinity and kinetics vs temperature

Basic Principle of the Biacore™ technology

- A binding molecule (ligand) is immobilized on a sensor surface
- The target molecule (analyte) is passed over the surface in a continuous buffer flow through a microfluidic system
- Analyte binding to the immobilized ligand is detected using SPR
The biospecific surface (sensor chip)

- Glass slide
- Prism
- Glass
- dextran layer (~100 nm)
- linker layer (goldlayer (~50 nm))
- immobilized biomolecule

The carboxymethylated (CM) dextran matrix (Biacore)
- Hydrophilic
- Easy use for covalent coupling
- High binding capacity
- Low non-specific binding
- Flexible => immobilized ligands can move to a certain extent on the surface
- High chemical resistance

Other matrices
- BioRad: alginate
- Xantec 3D hydrogel: agarose, alginate, PEG, cellulose, pectin

Liquid handling

Integrated micro Fluidics Cartridge (IFC)

Miniaturized system
- Integrated and automated liquid handling

Sensor surface
- Glass slide
- Prism
- IFC channels
- IFC
- Volume 20-40 nl

4 flow cells, formed by contact of the IFC on the sensor chip surface

Individual or serial use of the flow cells
- Automatic reference signal subtraction from sample signal, using flow cells 1 or 3 as references

Constant analyte concentrations at the sensor surface
How does SPR work?

Total internal reflection (TIR)

Light entering the glass semi-circular prism (refractive index $n_1 = 1.5$) undergoes total internal reflection at the interface with the medium of a lower refractive index (buffer, $n_2 = 1.33$) at an angle of incidence above a critical angle (θ).

Creation of the evanescent field wave

A light electromagnetic component, called evanescent wave, enters the low refractive index medium over a short distance from the TIR interface (evanescent field).

The amplitude of this wave decreases exponentially with distance, decaying over a distance of about one wavelength from the surface.
Surface plasmon resonance (SPR)

The interposition of a gold film at the interface generates a resonance phenomenon between free electrons at the metal surface and incident photons, yielding a loss of energy in the reflected light => SPR is seen as a dip in the intensity of reflected light at a specific angle of incidence (θ).

The conditions for SPR are sensitive to the refractive index (RI) of the medium in which the evanescent wave propagates.

How does BIAcore use SPR to detect biomolecular interactions?

- The detector continuously records the position of reduced light intensity and calculates the SPR angle
- Biomolecular interactions at the sensor surface change the RI within the evanescent wave penetration range
 => the angle of incidence required to create SPR is altered
 => this change is measured as a response signal

10^6 RI change $\Leftrightarrow 10^{-4}$ deg deviation $\Leftrightarrow 1$ RU (Resonance Unit) $\Leftrightarrow 1$ pg bound/mm2 surface
SPR detection and interaction analysis

- Importance of the buffer refraction index (DMSO, glycerol)
- RI values for glycoproteins, lipoproteins and nucleic acids of the same order of magnitude => mass detector essentially independent of the nature of the interactants
- SPR observed within a short distance from the gold interface: no quantitative analysis possible for analytes of big size (supramolecular assemblies, microorganisms, cells)
- Soluble analyte not penetrated by incident light => measurements possible on turbid or opaque samples
- Real-time measurement => kinetics (not necessary to reach equilibrium)
- Detection limit: 100-180 Da (Biacore T100-3000)

A typical interaction study

- Immobilization of the ligand on the sensor chip (+ reference surface)
- Injection of the analyte on immobilized ligand and reference surfaces
- Regeneration of the surface
- Data evaluation

Reference surface:
- mock surface (activated/blocked, capture surface without ligand)
- similar but non-interacting ligand (BSA, scrambled peptide)

Flow rate: 1 - 100 µl/min
Sample volume: 5 - 750 µl
Temperature: 4 - 40°C
Immobilization Strategies

Direct coupling
- Membrane-bound proteins
- HPA-chip
 - Adsorbed lipid monolayer
- Integral membrane proteins
 - Supported bilayer
 - Dextran-modified with lipophilic compounds

Indirect coupling
- Via a capture molecule covalently coupled to a CM chip
- Antibodies
- Biotinylated ligands
- His-tagged ligand

Regeneration strategies
- The activity of the immobilized ligand must remain unaffected
- Regeneration solution selected according the nature of the interaction (if known) => specific regeneration (interaction competitor (sugar), EDTA)
- Mild to more stringent conditions applied

<table>
<thead>
<tr>
<th>Strength</th>
<th>Acidic</th>
<th>Basic</th>
<th>Hydrophobic</th>
<th>Ionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>pH > 2.5 formic acid, HCl</td>
<td>pH < 9 HEPES/NaOH</td>
<td>pH < 9 50% ethylene glycol</td>
<td>1 M NaCl</td>
</tr>
<tr>
<td></td>
<td>10 mM Gly/HCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>pH 2-2.5 formic acid, HCl, H3PO4</td>
<td>pH 9-10 NaOH</td>
<td>pH 9-10 50% ethylene glycol</td>
<td>2 M MgCl2</td>
</tr>
<tr>
<td></td>
<td>10 mM Gly/HCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>pH < 2 formic acid, HCl, H3PO4</td>
<td>pH > 10 NaOH</td>
<td>pH > 10 25-50% ethylene glycol</td>
<td>4 M MgCl2 6 M GdnHCl</td>
</tr>
<tr>
<td></td>
<td>10 mM Gly/HCl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nucleic acids, heparin: 0.2-0.5% SDS
Data evaluation (BIAeval software)

- Global fitting of experimental data from several concentrations to a predefined model
- Determination of kinetic constants (Langmuir 1:1)
 - association rate constant (k_a) : $10^3 - 10^7$ M$^{-1}$s$^{-1}$
 - dissociation rate constant (k_d) : $5 \times 10^{-6} - 0.5 \times 10^{-4}$ s$^{-1}$
- Determination of affinity constant (K_D)
 - from the kinetic constants: \[K_D = \frac{k_d}{k_a} \]
 - (50pM -100 µM)
 - from equilibrium analysis (steady state model)
- Evaluation of fitting quality (acceptable statistics: residuals, Chi2)
- Biological and experimental relevance of the calculated parameters (R_{max})

Relevance of binding kinetics

The same affinity (identical K_D) can be resolved into different kinetic rate constants for different interactions

k_a : driven by molecular recognition ≠ k_d : driven by complex stability

Kinetic properties are critical to the therapeutic performance of drugs and affect multiple functional aspects (pharmacokinetics, dosing)

Rapid kinetics => frequent administration of low dose required to occupy target
Slower kinetics => administration of high dose occupies target for long time
Some limitations of Biacore™ SPR

- **Kinetics**
 - typical k_a values range: 10^3 to 10^7 M$^{-1}$s$^{-1}$
 - typical k_d values range: 10^{-5} to 0.5-1 s$^{-1}$

 To avoid mass transport (diffusion of the analyte from the bulk to the surface vicinity) limitation: use high flow rate and low immobilized ligand level

- **Affinity**

 typical K_D range: $5 \times 10^{-11} - 10^{-4}$ M

 Equilibrium measurements: time to reach equilibrium determined primarily by k_d

 => high affinity interactions ($K_D < 10$ nM) with very slow k_d values unsuitable for equilibrium analysis

- **Small molecules**

 <100 Da: difficult to detect

SPR and lectin-carbohydrate interactions

Carbohydrate-protein interactions in biological systems mostly occur among **multivalent partners**

Affinity: describes the binding of a monovalent ligand to its partner

Avidity: takes into account multivalent interactions between partners

=> apparent enhanced functional affinity

Potency enhancement in multivalent ligands can result from different mechanisms, including clustering, chelation and statistical rebinding effects

=> may be exploited for generation of lectin inhibitors.

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Chelation</th>
<th>Statistical rebinding (proximity)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPR => importance of immobilized partner choice and of ligand surface density
Avidity in carbohydrate pattern recognition by the innate immune recognition protein mannan-binding lectin (MBL)

Lectin domain-micropattern interaction
- C-lectin domain
- Neck region
- Terminal sugar
- Oligosaccharide

Low affinity ($K_D > 10^{-3}$ M)
- 1:1 interaction

MBL-macropattern multivalent interaction
- MBL recognition domain (CRD)
- Carbohydrate recognition domain (CRD)
- Terminal sugar
- Microbial cell wall
- Collagen triple helix

High affinity ($K_D \sim 10^{-9}$ M)
- Multivalent interaction

Adapted from Hoffmann et al. (1999) Science 284:1313

Avidity in the context of SPR analysis
MBL-neoglycoconjugate (Man-BSA) interaction

Immobilized glycoconjugate - soluble lectin

Effect of lectin oligomerization
- 8 µM
- 0.4 µM
- 0.2 µM
- 0.125 µM

Effect of surface density
- 4000 RU immobilized Man-BSA
- 1600 RU immobilized Man-BSA
- 600 RU immobilized Man-BSA

SPR: sugar-lectin interactions
Gjelstrup et al. (2012) J Immunol 188:1292
Lectin-carbohydrate interactions

Lectin immobilized - soluble glycoconjugate

- Direct binding
 - Immobilized ectodomain of the macrophage mannose receptor
 - Soluble glycoprotein (Man-BSA) (0.0125-2.5 µM)

- Inhibition study
 - Immobilized ectodomain of the macrophage mannose receptor
 - Soluble Man-BSA (0.125 µM) injected in the presence of (Manα2man)₄Lys₃ glycocluster (0.5-25 µM)
 - Estimation of the lectin-glycocluster affinity from the inhibition of Man-BSA binding to the lectin

Inhibitors of lectin-carbohydrate interactions

- Glycoconjugate (BSA-mannotriose) immobilized
- Soluble ectodomain of DC-SIGN receptor (20 µM) injected in the presence of increasing concentrations of multivalent glycomimetics (pseudomanno-bioside and -trioside compounds)
- Steady state response => conversion to lectin residual activity => IC₅₀ determination

Strong antiviral activity found for the higher valency compounds with IC₅₀ in the nM range => new compounds in anti-viral strategy

Cell-lectin interaction

Injection of soluble bacteria [10^8 CFU/ml]

Injection of soluble inactivated vaccinia virus (stock: eq 2 x 10^{10} CFU/ml)

Screening of lectin-carbohydrate interactions
SPR imaging (SPRI)

Oligosaccharide array for the measurement of glycosaminoglycan (GAG)-protein interactions
SPRi of GAG-protein interactions

GAG: negatively charged glycans => regulate the activity of growth factors and cytokines
- Pyrrole-GAG spotted: 6 kDa heparin (HP6), chondroitin sulfate (CS), dermatan sulfate (DS)
- Proteins used: stromal derived factor(SDF)-1α, interferon(IFN)-γ, anti-CS IgM (control)

Useful References
[Several figures in this presentation were modified from those found in various Biacore® T100 Manuals, Handbooks and Brochures from www.biacore.com. © 2001-2007, Biacore AB]

Acknowledgements
SPR platform: Partnership for Structural Biology (PSB)
UMS 3518/ISBG (Integrated Structural Biology Grenoble)
SPR experiments: IRPAS (Immune Response to Pathogens & Altered Self) team
MP (Membrane and Pathogens) team
SAGAG (Structure and Activity of GlycosAminoGlycans) team