

Electron microscopy: new opportunities

Helene Malet Electron microscopy group, IBS

Electron microscopy in structural biology: Which objects can be analysed

What is negative stain electron microscopy?

Sample preparation

The sample will be thin so electrons will be able to go through.

A

- We will see the stain as it is made of heavy atom which will interact with electrons.
- The stain will be more present where the protein is not: "negative stain"

The sample will be thin so electrons will be able to go through.

Α

- We will see the stain as it is made of heavy atom which will interact with electrons.
- The stain will be more present where the protein is not: "negative stain"

Advantages/drawbacks

> Advantages:

- Fast
- Small amount of protein
- (concentration around 0.01-0.1mg/ml, few ul)
- Small proteins visible (>50-100kDa)
- High contrast
- Drawbacks:
 - Flattening and drying of the sample.
 - Artifacts due to the stain.

What we see in negative stain

Single particles visualized by negative stain EM: examples

What is negative stain EM used for ?

Quality control

Define oligomerization states

1 band on gel, 2 size \rightarrow 2 oligomerisation state

After fine gel filtration \rightarrow Crystal of the 2 types

Organization of the protein in the crystal

- Scratch the crystal with a potter so that it becomes thin enough for the beam to go through.
- Image the small crystals obtained in the microscope in order to see the crystal lattice

Short bacteriophage T4 fiber

➢ 3D reconstruction

Negative stain-EM Envelope of the molecule, resolution limited to 15-20 A

Resolution: what do we see ?

Resolution: what do we see ?

So, negative stain EM can give important information quickly, but:

- the object is not in its native environment
- Can be flattened
- resolution is limited to 15 A.

Can we do better ??

Object seen in negative stain

Real object to be visualized

Cryo-electron microscopy !

> We need to freeze our sample as a thin layer:

- \checkmark to resist to the vacuum
- \checkmark to allow electrons to be transmitted

Dubochet et al., (1982)

a) hexagonal

b) cubic

c) vitrified

a)

C)

Grids used for cryo-EM

A frozen grid

Cryo-EM: advantages/drawbacks

> Advantages:

- Native state
- Higher resolution
- Small amount of protein (1 grid = 4 ul at 0.1-1mg/ml)
- Disadvantages:
 - Low contrast
 - Highly sensitive to radiations
 - Minimal size limit:
 250 kDa
 - Difficult

Negative stain vs. Cryo-EM

Cryo-EM: native state, so atomic resolution can (in theory) be reached!

For high-resolution, you will need to collect on a state-of-the art electron microscope

FEI Polara

FEI Titan Krios

Electron source

Purpose: generation of electrons that can be accelerated by high tension to obtain the illuminating electron beam

Thermionic gun: W or LaB6 Electrons come out when the emitter is heated

Field emission gun

Detection

 \succ On films that need to be developed and digitized

> On CCD camera

For high-resolution, you will need to do a lot of image processing

Combination EM-crystallography

Or... high resolution EM

Or... high resolution EM

Smaller complexes less and less symetric

Proteasome (D7 symmetry, 700kDa)

Li et al, Nature methods, 2013

Ribosome (no symmetry, 4MDa, 4 Å resolution)

Bai et al, eLife, 2013

Towards high resolution of smaller complexes

Lyumkis et al, Science, 2013

Liao et al, Nature, 2013

Merk et al., Subramaniam, Cell 2016

The dream: understanding a system from the cell context to the atomic level

If complexes heterogeneous: separation of different populations within the same sample

- > Different 3D volumes with particles chosen randomly.
- Competitive alignment to determine to which structure each particle belongs

Simonetti et al, Nature 2008

If complexes heterogenous: separation of time-resolved states

Fischer et al, Nature 2010