

Molecular Simulations of Simple and Complex Carbohydrates

Elisa Fadda

Department of Chemistry and Hamilton Institute,

Maynooth University, Ireland

elisa.fadda@mu.ie @elisaTelisa

Glyco@Alps Structural Glycoscience Summer School, Grenoble 2-4 June 2018

Following

V

Tá Éire fíorálainn! Land of green hills and dark beer. With capital Dublin glowing in the Irish night.

Complex carbohydrates (glycans) decorate the surface of proteins and lipids

o Recognition
o Binding
o Cell migration
o Cell-cell interaction
o Protein stability
o Protein conformation
o Protein function

Timeframe of Molecular Motions

Dror et al, JGP (2010) 135 (6): 555

Structural/Conformational Disorder

High conformational flexibility => "intrinsic disorder"

Sugars can be highly flexible and dynamic

1l6x PDBid

250 ns single trajectory

Conformational ensembles

250 ns single trajectory overlay

1l6x PDBid

Not every N-glycan acts the same!

... so where is the difference?

Sequence-to-structure relationships

This conformational propensity/degree of flexibility (or lack-there-of) depends on the glycan's **sequence** and linkages

Sequence-to-structure relationship

This conformational propensity/degree of flexibility (or lack-there-of) depends on the glycan's sequence and **linkages**

L-Fuc- α (1-6)-GlcNAc

L-Fuc- α (1-3)-GlcNAc

Why Classical Mechanics is a fair enough approximation?

According to the Born Oppenheimer (BO) or adiabatic approximation we can separate the motion of the nuclei from the motion of electrons and safely assume that **the electron cloud adjusts instantly** to changes in the nuclear configuration

Sugars in a Classical Mechanics Representation

Electrostatics are reproduced by a Coulombtype potential

Dispersion interactions (hydrophobic) are reproduced by a van der Waals-type potential

Molecular Dynamics

Computational Biophysics

With High Performance Computing (HPC) you can study,

- Conformational propensity of large biomolecular systems
- Binding energetics
- Chemical reactions energetics
- Peptidomimetics and glycomimetics design
- Enzyme engineering

GLYCAM06 Carbohydrate Force Field

A complete, self-contained and transferable set of parameters for the simulation of carbohydrates and glycol-conjugates

- Carbohydrates of **all ring sizes and conformations** for both monosaccharides and oligosaccharides (not open ring conformations)
- Parameters for N- and O-glycosidic linkages, suitable for combination with the param99sb version of the AMBER protein force field
- Parameters for sulfated (and not) GAGs
- **GLYCAM06 is a 'stand alone' force field** that can in principle be combined to any other protein ff (non-covalent linkages)
- It is <u>the only ff</u> that uses the same atom type (CG) for α and β anomers allowing for ring conformational changes (puckering)

Kirschner *et al J Comp Chem* (2008) 29(4): 622–655 Fadda and Woods *Drug Discov Today* (2010) 15(15-16):596-609

GLYCAM-Web (glycam.org)

GLYCAM	HOME	ABOUT US	NEWS LEGAC	Y TOOLS HELF	P DOWNLOADS	6	Q
3D Structure Pre	diction Tools	3D Structu	ure Libraries	Other Tools	Force Field	Documentation	Report a Problem
GLYCAM-Web is carbohydrates an the current capa	s dedicated nd macromo bilities of the	to simplifying the blecular structure e site. *You will b e	e prediction of three s involving carbohy uild a simple	r-dimensional struc /drates. Click on th and a	ctures of he tabs above to I	earn	
Currently availab	le tools:	complex ca afternoon	rbohydrate t	his			
Carbohydrate Builder	Glycoproteir Builder	n Oligosacchari Libraries	de PDB Preprocessor	Build via Text	Build via URL	GAG Builder	
Auto Docking	Gly-Spec (Grafting)	Carbohydrate Visualization	e				

CHARMM + CHARMM-GUI

• CHARMM36 Carb parameter set (PAR_ALL36_CARB.PRM)

42. Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD., Jr CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein Modeling. J Chem Theory Comput. 2011;7 (10):3162–3180. [PMC free article] [PubMed]

43. Mallajosyula SS, MacKerell AD., Jr Influence of Solvent and Intramolecular Hydrogen Bonding on the Conformational Properties of O-Linked Glycopeptides. J Phys Chem B. 2011;115 (38):11215–11229. [PMC free article] [PubMed]

44. Mallajosyula SS, Guvench O, Hatcher E, MacKerell AD., Jr CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. J Chem Theory Comput. 2012 doi: 10.1021/ct200792v. [PMC free article] [PubMed] [Cross Ref]

J Chem Theory Comput. 2018 Jun 12;14(6):3132-3143. doi: 10.1021/acs.jctc.8b00175. Epub 2018 May 4.

CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses.

<u>Aytenfisu AH</u>¹, <u>Yang M</u>^{1,2}, <u>MacKerell AD Jr</u>¹.

TABLE 2

A summary of the parameterization protocol used for the development of four carbonydrate force helds reviewed					
	CHARMM	GLYCAM06	GROMOS-45A4	OPLS-AA-SEI	
Valence terms					
Equilibrium bond lengths (r) and angles (θ)	Chosen to reproduce crystal internal and unit-cell geometries	Chosen to reproduce neutron-diffraction geometries	GROMOS-45A3	OPLS-AA	
Force constants $kb/k\theta$	Fit to QM data	Fit to QM data	GROMOS-45A3	OPLS-AA	
Torsion terms	Fit to QM rotational energy curves	Fit to QM rotational energy curves	Fit to QM rotational energy curves	Fit to QM rotational energy curves	
Partial charges	Empirically fit for carbohydrate fragments, and refined to reproduce: QM solute–water <i>E</i> _{int} , and experimental <i>V</i> _m of carbohydrate solutions	QM RESP fit and ensemble averaged over multiple conformations. RESP scaling to reproduce crystal unit-cell geometries	QM RESP fit with averaging over atom types	OPLS-AA (empirically fit to reproduce heat of vaporization and densities of pure liquids)	
vdW terms	CHARMM22	AMBER PARM94	GROMOS-45A3	OPLS-AA	
1,4 scaling (Elec/vdW)	No/no	No/no	No/no	Yes/yes	
Unique charge sets for α - and β -anomers	No	Yes	No	No	
Unique charges on each atom	No	Yes	No	No	
Unique atom types for α - and β -anomers	Yes	No	Yes	Yes	

A summary of the parameterization protocol used for the development of four carbohydrate force fields reviewed

Fadda and Woods Drug Discov Today (2010) 15(15-16):596-609

What do I need to run an MD simulation?

- 1. Coordinate file (pdb)
- 2. Decide what force field your want to use

Carbohydrate	Protein/lons	Water	MD software
GLYCAM06	AMBER99-SB-ILDN	Тір3Р	AMBER v.12/16/18
CHARMM36	CHARMM36	Tip4P(Ew)	CHARMM
		Tip5P	GROMACS

- 3. Convert the coord file to be read by the MD running software
- In AMBER this is done by a tool called *tleap* which produces *.rst* and *.prm7* files, i.e. the amber coordinate file and parameters (topology) file

An MD run protocol

- 1. Simulation box and adjust ionic concentration
- 2. Energy minimization

3. Equilibration phase

- 1. Heating 0 -> 300 K (NVT)
- 2. Equilibration of the pressure (NPT)
- 3. Equilibration of the conf. degrees of freedom (NPT) *
- 4. Production (data collection) *

How long should I run steps 3.3 and 4?

Reaching thermodynamic equilibrium

Sampling: How long is long enough?

It depends on the system, on its intrinsic flexibility, and on the chosen ff

Enough sampling: Exploring the PES exhaustively

Confomational sampling from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH

The MD trajectory was extended to 1 μ s to analyze the conformational behavior of the sugar. A visual analysis has shown that there is a significant conformational change occurring at first around 60 ns.

The conformational change lasts for about 40 ns. If the MD trajectory was of 100 ns, **the relative stability of the 2 conformations would have been 60:40**, largely overestimated.

Over 1 μ s the ratio is 76:24 => Δ G° \approx - 3 kJ/mol

Time (100 ps per frame)

open

Conformational sampling and molecular recognition

Pholiota squarrosa lectin (PhoSL)

- Highly selective for α(1-6)fucose
- Very low binding affinity for Lfucose (5.8 – 6.2 mM)
- Higher affinity for N-glycans (3 μM), prob interactions with GlcNAc moieties

Recognition of *gt* conformer

Pholiota squarrosa lectin (PhoSL) HADDOCK docking to *gg, tg and gt* conformers

gt disaccharide (4AGT*) binds in the conformation suggested based on NOE (shown)

The bound conformation is consistent with additional contacts to the GlcNAc

gg tetrasaccharide does not seem to have the correct conformation to bind

*Houser et al (2015) Acta Crystallogr., Sect. D 71: 442

Recognition of *gt* conformer in the *sugar d* tetrasaccharide

Pholiota squarrosa lectin (PhoSL) structural alignment of *gt conformers*

gt tetrasaccharide presents minor steric clashes.

The "recognition complexes" will need to be studied via MD simulation to release the clashes

Docking <u>alone</u> is not always the answer!

A few take home messages

- MD is a powerful structural biology tool that allows us to understand molecular behavior at the atomistic level of detail
- The above is true provided that the system is properly equilibrated and that the simulation is converged
- Through identification of the glycan conformational propensity we can understand molecular recognition
- Docking is a very helpful technique, but is often not plugand-play

Acknowledgements

Anne Imberty, Serge Pérez and the Organizers

Students

Aoife Harbison (PhD) Matthew Nixon (PhD) Philip Hanley (4th year BSc) Keith Fenlon (4th year BSc) Lorna Brosnan (4th year BSc)

N-Glycans/Carb Collaborators

Roisin O'Flaherty (NIBRT, UCD) Pauline Rudd (NIBRT, UCD) Chris Taron (NEB) Sandrine Py (UGA) Paul V. Murphy (NUIG) Chris Rowley (Memorial Univ, NL)

\$\$\$ John and Pat Hume Scholarships, MU

Ring conf and (1-6) linkage torsion angles Man- β (1-4)-GlcNAc- β (1-4)-[α (1-6)-Fuc]-GlcNAc- β -OH (sugar d)

Sampling through high and low populated conformational states during a 1 µs MD trajectory

Confomations from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH (sugar d)

The MD trajectory was extended to 1 μ s to analyze the conformational behavior of the sugar. A visual analysis has shown that there is a significant conformational change occurring at first around 60 ns.

The conformational change lasts for about 40 ns. If the MD trajectory was of 100 ns, **the relative stability of the 2 conformations would have been 60:40**, largely overestimated.

Over 1 μ s the ratio is 76:24 => Δ G° \approx - 3 kJ/mol

Confomations from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH (sugar d)

VMD

File>New Molecule> Browse: closed_conf_f2785.pdb

Mouse > Label > Dihedrals 4

Select the following atoms represented in the VMD OpenGL Display and write down the corresponding value for the dihedral angle (torsions): on GlcNAc(1) O4 - C4 - C5 - C6 on GlcNAc(1)-Fuc(2) O5 - C1 - O6 - C6 (ϕ), C1 - O6 - C6 - C5 (ψ), O6 - C6 - C5 - C4 (ω)

> VMD Main Window: deselect "D" which makes the indicated molecule not visible, then load open_conf_f4810.pdb and repeat the steps above

Confomations from MD Man- $\beta(1-4)$ -GlcNAc- $\beta(1-4)$ -[$\alpha(1-6)$ -Fuc]-GlcNAc- β -OH (sugar d)

Write your results in a table like the one shown below,

Trajectory frame	O4C4C5C6	Ο5C1O6C6 (φ)	C1O6C6C5 (ψ)	Ο6C6C5C4 (ω)
2785	59.95	-87.86	-178.54	53.15 (<i>gg</i>)
4810	158.11	-80.11	122.24	-69.97 (<i>tg</i>)

For nomenclature and other info see also Wormald et al Chem Rev (2002) 102:371-386