

1

Absolute configuration determination
(GC-MS)

15

Monosaccharide Sequence

 NOE contact
Glycosylation shift (HSQC spectrum)
Inter-residual long range correlation (HMBC spectrum)

Component	Group	δ _H	δ _c
3-Deoxy sugar	CH ₂	1.9-2.6	30-42
6-Deoxy sugar	CH ₃	1.1-1.4	15-21
Uronic acid	СООН		173-178
Amino sugar	CHN		44-59
O-acetyl	CH ₃	2.1-2.3	21-22
	CO		174-176
N-acetyl	CH ₃	1.8-2.1	23-24
	CO		174-176
N-formyl	HCO	8.0-8.1	164.5-165.
1-carboxyethyl	CH ₃	1.4-1.6	18-20
	СООН		175-179
ethanolamine	CH ₂ N	3.25-3.30	40-42
	CH ₂ O	4.0-4.2	62-64

41

Gas Chromatography-Mass Spectrometry (GC-MS) power and limits (for carbohydrates)

Gas Chromatography – Mass Spectrometry

- Components (EI GC-MS)
- Monosaccharide analysis as:
 - Acetylated Alditols
 - Partially Methylated Acetylated Alditols
 - Acetylated Methylglycosides
 - Acetylated Octyl Glycosides

- Carrier Gas, N₂ or He, 1-2 mL/min
- Injector
- Oven
- Column
- Detector

Detectors

- Flame Ionization Detectors (FID)
- Electron Capture Detectors (ECD)
- Electron impact/chemical ionization (El/Cl) Mass spectrometry

What kind of info can mass spec give you?

- Molecular weight
- Elemental composition (low MW with high resolution instrument)
- Structural info (hard ionization or CID)

 Gas-phase ions are separated according to mass/charge ratio and sequentially detected

Parts of a Mass Spec

- Sample introduction
- Source (ion formation)
- Mass analyzer (ion sep.) high vac
- Detector (electron multiplier tube)

Gas Chromatography – Mass Spectrometry

- Monosaccharide composition as:
 - Acetylated Alditols
 - Acetylated Methyl glycosides
- Additional info
 - Partially Methylated Acetylated Alditols
 - Acetylated Octyl Glycosides
 - N.B.: amount of sample required ~ 0.2 mg

56

Acetylated Alditols: advantages and limits

· Limits:

- · Free emiacetals degrade during hydrolysis
- · Care needed for hydrolysis conditions selection
 - Ideal conditions: 100% hydrolysis 0% degradation
 - · Ketoses linkages are more labile than those of hexoses
 - · Aminosugars linkages are very strong
 - Sugars carrying an aminosugar or an uronic acid are understimated
- · Acidic monosaccharides are not detected even if their hydrolysis occurs

Solution: other types of derivatives

Acetylated Methyl glycosides

- Advantages:
 - · Less reactions' step compared to Acetylated Alditols
 - · O.N. reaction yields to almost complete methanolysis of the product
 - No free aldehyde group is produced during methanolysis \Rightarrow monosaccharide degradation is minimized
 - Suitable for most type of sugars
 - Hexoses
 - Aminosugars
 - Uronic acid
 - Ulosonic acids
 -

Partially Methylated Acetylated Alditols

Advantages:

•Interpretation rules easy and clear

•One analysis determines the substitution pattern of the residues in the polysaccharides

•Analysis almost mandatory to understand complex poly/oligosaccharide

Limits:

•Polysaccharide undermethylation yields to false results

•Procedure needs to be adapted for uronic acids detection

•Even if interpretation of PMAA is clear, it may be not conclusive in few cases

Acetylated Methyl glycosides Fragmentation rules

Fragmentation rules:

- The most stable ions will be observed in the EI-MS spectrum
- · Isomeric sugars (as Glc and Gal) give the same EI-MS spectrum
- The radical cation of the methylglycosides undergoes several pathways:
- A, B, C, D, E, F, H, J, and K (example given for an hexose)
- Fragments gives a series of daughter ions by loss of neutral molecules (AcOH, Ac₂O, AcO•, CH₂=C=O)
- Occurrence of acetamido, or deoxy groups, change the preferential fragmentation pathway
- Along with the ions from the fragmentation pathways, triacetoxonium and diacetoxonium ions maybe observed.

m/z 145 H₃C

СН₃ Н₃С

m/z 103

92

95

107

121

