Sedimentation velocity SV

<u>Angular velocity</u> :	Large compared to the ability of the particle to sediment	
	(typically 42000 revs. per min.)	

Duration: Some hours

<u>Analysis</u>: As a function of time Formation of a boundary

<u>Sample:</u> 420, 110 or 55 μl (I =12, 3 or 1.5 mm)

Workshop Glycosciences 2016 - Practical AUC christine.ebel@ibs.fr

A=E_{0.1%} Ic

 $\Delta J \alpha (\partial n / \partial c) | c$

Selectivity depending on presence of chromophore 220nm $< \lambda < 600$ nm Scan of 3 λ possible

0.1-2 mg/mL typically (60-500 µL)

Not selective Measures everything (detergent, glycerol...) SE difficult

0.1- >10 mg/mL (60-500 µL)

Can be used in the same run - up to 3 or 7 samples =>duplicate analysis =>estimate of composite particle composition

Signal in arbitrary units

Highly selective Requires GFP fusion or FITC labeling SE difficult

> pM-µM (500 µL)

up to 6 or 14 samples

partial specific volume

Measured or estimated from chemical structure For protein: calculation from sequence: program SEDNTERP/SEDFIT For chemicals, tabulated volumes (Durschschlag & Zipper)

	V
	(mL/g)
NaCl	0.34
ADN, Na⁺ salt	0.54
sucrose	0.62
protein	0.74
Detergent DDM	0.824
H ₂ O	1.00
Lipids:	≈1
Detergent LAPAO	1.067

 $\overline{V}_{\text{complex}} = \Sigma M_{\text{i}} \overline{V}_{\text{i}} / \Sigma M_{\text{i}}$

Transport equation: For each solute

Movement of the particle In response to centrifugation forces Force= $\omega^2 r$

s = velocity/centrifugation field

Movement of the particle In response to concentration gradients Force= $(\partial \mu / \partial r)$

Brownian motion

Appearance or Disappearance of material

Problem: define the model for the analysisBoundary spreading= diffusion or heterogeneity ? How many species? Interactions?

•The c(s) analysis considers a distribution of particles, for which a plausible relationship between s and D is established (input : v, f/f_{min} , ρ and η): only concentrations and noises are determined.

•In the non-interacting species analysis, s, D, concentrations and noises are adjusted.

Experimental strategy

1: SV measured at different concentrations or other conditions

- •superposition of the c(s) for different samples/optics
 - → Homogeneous?
 - → Number of type of species?
 - → Equilibrium of association?

Examination of the signal intensity

→Concentration

→Bound detergent in membrane proteins

•analysis of the s-value

- → compatibility with a given association state?
- → shape

→ equilibrium constant

NIS (non-interacting species analysis) if appropriate

2. SE if needed and appropriate (sedimentation equilibrium)

- **Programs:** Sedfit : Analysis of one SV experiment: *c*(*s*); NIS...
 - Gussi :figures and calculations after Sedfit
- Sedphat :Global analysis of \neq experiments may adress more complex interacting systems